首页> 外文期刊>Control Theory & Applications, IET >Constrained model predictive control synthesis for uncertain discrete-time Markovian jump linear systems
【24h】

Constrained model predictive control synthesis for uncertain discrete-time Markovian jump linear systems

机译:不确定离散马尔可夫跳跃线性系统的约束模型预测控制综合

获取原文
获取原文并翻译 | 示例

摘要

This study is concerned with model predictive control (MPC) for discrete-time Markovian jump linear systems subject to polytopic uncertainties both in system matrices and in transition probabilities between modes. The multi-step mode-dependent state-feedback control law is utilised to minimise an upper bound on the expected worst-case infinite horizon cost function. MPC designs for three cases: unconstrained case, constrained case and constrained case with low online computational burden (LOCB) are developed, respectively. All of them are proved to guarantee mean-square stability. In the constrained case, the minimisation of the expected worst-case infinite horizon cost function and constraints handling are dealt with in a separate way. The corresponding algorithm is proved to guarantee both the mean-square stability and the satisfaction of the hard mode-dependent constraints on inputs and states. To reduce the computational complexity, an algorithm with LOCB is developed by making use of the affine property of the solution to linear matrix inequalities. Finally, a numerical example is given to illustrate the proposed results.
机译:这项研究涉及离散预测马尔可夫跳跃线性系统的模型预测控制(MPC),该系统在系统矩阵和模态之间的转换概率中都存在多义性不确定性。利用多步模式相关的状态反馈控制律来最小化预期的最坏情况无限视界成本函数的上限。分别开发了三种情况的MPC设计:无约束情况,受约束情况和具有低在线计算负担(LOCB)的受约束情况。所有这些都被证明可以保证均方稳定性。在受约束的情况下,将以单独的方式处理预期的最坏情况下无限远景成本函数和约束处理的最小化。相应的算法被证明可以保证均方稳定性和对输入和状态的硬模式相关约束的满足。为了降低计算复杂度,通过利用线性矩阵不等式解的仿射性质,开发了一种具有LOCB的算法。最后,给出一个数值例子来说明所提出的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号