首页> 外文期刊>Control Theory & Applications, IET >Adaptive neural control of state delayed non-linear systems with unmodelled dynamics and distributed time-varying delays
【24h】

Adaptive neural control of state delayed non-linear systems with unmodelled dynamics and distributed time-varying delays

机译:具有未建模动力学和时滞分布的时滞非线性系统的自适应神经控制

获取原文
获取原文并翻译 | 示例

摘要

In this study, a robust adaptive control is proposed for a class of strict-feedback state delayed non-linear systems with unmodelled dynamics and distributed time-varying delays using radial basis function neural networks. Dynamic uncertainties are dealt with using separation technique and introducing a dynamic signal. The terms including state time-varying delay and distributed time-varying delay uncertainties are compensated for by constructing appropriate Lyapunov-Krasovskii functionals. Using Young's inequality, only one learning parameter need to be tuned online at each step of recursion. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness of all signals in the closed-loop system. Simulation results demonstrate the effectiveness of the proposed approach.
机译:在这项研究中,提出了一种鲁棒的自适应控制,它利用径向基函数神经网络对一类具有无模型动力学和分布时变时滞的严格反馈状态时滞非线性系统进行了控制。动态不确定性通过使用分离技术并引入动态信号来处理。通过构造适当的Lyapunov-Krasovskii泛函来补偿包括状态时变延迟和分布式时变延迟不确定性在内的术语。利用杨氏不等式,在递归的每一步中仅需在线调整一个学习参数。实践证明,所提出的设计方法能够保证闭环系统中所有信号的半全局一致最终有界性。仿真结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号