首页> 外文期刊>Control Theory & Applications, IET >Adaptive neural network tracking control for switched uncertain non-linear systems with actuator failures and time-varying delays
【24h】

Adaptive neural network tracking control for switched uncertain non-linear systems with actuator failures and time-varying delays

机译:具有执行器故障和时变时滞的不确定非线性切换系统的自适应神经网络跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on the problem of adaptive neural network (NN) tracking control for a class of strict-feedback non-linear switched systems under arbitrary switching. The considered systems are with unknown external disturbances, time-varying delays, and actuator failures. NNs are used to approximate unknown functions and Lyapunov-Karsovskii functionals are utilised to compensate for the time-varying delays. Different from the existing results, piecewise switched adaptive laws are proposed for each subsystem, which can reduce conservativeness caused by using common adaptive laws for all subsystems. Besides, prescribed performance bound (PPB) technique is developed to further improve the transient performance of the systems, especially when actuator failures occur and system switchings take place. Finally, under the framework of Lyapunov theory, an adaptive NN reliable tracking control method is proposed. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error remains within the PPBs. A simulation study is given to illustrate the effectiveness of the authors' results.
机译:本研究的重点是一类任意切换下的严格反馈非线性切换系统的自适应神经网络(NN)跟踪控制问题。所考虑的系统具有未知的外部干扰,时变延迟和执行器故障。 NN用于近似未知函数,而Lyapunov-Karsovskii函数则用于补偿时变延迟。与现有结果不同的是,针对每个子系统提出了分段切换的自适应律,可以减少由于对所有子系统使用通用的自适应律而引起的保守性。此外,还开发了规定的性能限制(PPB)技术来进一步改善系统的瞬态性能,尤其是在发生执行器故障并进行系统切换时。最后,在李雅普诺夫理论的框架下,提出了一种自适应神经网络可靠跟踪控制方法。事实证明,闭环系统中的所有信号最终都是半全局一致的,并且跟踪误差仍在PPB内。通过仿真研究来说明作者结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号