首页> 外文期刊>Control Theory & Applications, IET >Identification method of neuro-fuzzy-based Hammerstein model with coloured noise
【24h】

Identification method of neuro-fuzzy-based Hammerstein model with coloured noise

机译:基于神经模糊的Hammerstein有色噪声模型的辨识方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, neuro-fuzzy-based identification procedure for Hammerstein model with coloured noise is presented. Separable signal is used to realise the decoupling of the identification of dynamic linear part from that of static non-linear part, and then correlation analysis method is adopted to identify the parameters of the linear part. Furthermore, by combining multi-innovation and gradient search theory, multi-innovation-based extended stochastic gradient approach is derived for improving the parameters estimation accuracy of the non-linear part and the noise model. In addition, the convergence analysis in the martingale theory illustrates that the parameter estimation error will converge to zero under the persistent excitation condition. Finally, two simulation results demonstrate that the proposed approach has high identification accuracy and good robustness to the disturbance of coloured noise.
机译:在这项研究中,提出了基于神经模糊的Hammerstein模型噪声识别方法。利用可分离信号实现动态线性零件识别与静态非线性零件的去耦,然后采用相关分析方法识别线性零件的参数。此外,结合多元创新和梯度搜索理论,推导了基于多元创新的扩展随机梯度方法,以提高非线性部分和噪声模型的参数估计精度。此外,the理论的收敛性分析表明,在持续激励条件下,参数估计误差将收敛为零。最后,两个仿真结果表明,该方法具有较高的识别精度和对色噪声干扰的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号