首页> 外文期刊>Control Theory & Applications, IET >Neuro-observer based online finite-horizon optimal control for uncertain non-linear continuous-time systems
【24h】

Neuro-observer based online finite-horizon optimal control for uncertain non-linear continuous-time systems

机译:不确定非线性连续时间系统的基于神经观测器的在线有限水平最优控制

获取原文
获取原文并翻译 | 示例

摘要

In this study, within framework of adaptive dynamic programming (ADP), a neuro-observer based online optimal control solution is developed for the finite-horizon optimal control problem of uncertain non-linear continuous-time systems. First, a neuro-observer is designed to estimate system states from the uncertain system without knowledge of system drift dynamics. Then based on the observed states, an online finite-horizon optimal control scheme is proposed by a single critic network to approximate the solution of the time-varying Hamilton-Jacobi-Bellman (HJB) equation and obtain the optimal control. In the design, a novel observer-critic architecture is presented for implementing the control scheme by using two neural networks (NNs): an observer NN is used to learn the uncertain system dynamics and a critic NN is employed not only to approximate the solution of time-varying HJB equation, but also to ensure the terminal constraint is satisfied. Besides, an additional adjusting term is introduced by Lyapunov theory in critic NN weight tuning algorithm, which relaxes the requirement for an initial stabilising control. Moreover, uniform ultimate bounded stability of the closed-loop system is guaranteed via Lyapunov's direct method. Finally, simulation results are shown to demonstrate the effectiveness of the proposed approach.
机译:在这项研究中,在自适应动态规划(ADP)的框架内,针对不确定的非线性连续时间系统的有限水平最优控制问题,开发了一种基于神经观测器的在线最优控制解决方案。首先,神经观测器被设计为在不确定系统漂移动力学的情况下,从不确定系统中估计系统状态。然后,基于观测状态,由单个批评者网络提出了一种在线有限水平最优控制方案,以对时变的Hamilton-Jacobi-Bellman(HJB)方程的解进行近似并获得最优控制。在设计中,提出了一种新颖的观察者批判性体系结构,用于通过使用两个神经网络(NN)来实现控制方案:观察者NN用于学习不确定的系统动力学,而批评者NN不仅用于近似解决方案。时变的HJB方程,还可以确保满足终端约束。此外,Lyapunov理论在评论家NN权重调整算法中引入了附加的调整项,从而放宽了对初始稳定控制的要求。此外,通过李雅普诺夫的直接方法可以保证闭环系统的一致极限极限稳定性。最后,仿真结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号