首页> 外文OA文献 >Design of robust-stable and quadratic finite-horizon optimal active vibration controllers with low trajectory sensitivity for the uncertain flexible rotor systems via OFA and HTGA
【2h】

Design of robust-stable and quadratic finite-horizon optimal active vibration controllers with low trajectory sensitivity for the uncertain flexible rotor systems via OFA and HTGA

机译:通过OFA和HTGA设计不确定性柔性转子系统的低轨迹灵敏度鲁棒稳定和二次有限水平最优主动振动控制器

摘要

[[abstract]]By studying the robust stabilizability condition, the orthogonal-functions approach (OFA), and the hybrid Taguchi-genetic algorithm (HTGA), an integrative method is presented in this paper to design the robust-stable and quadratic finite-horizon optimal active vibration controller with low trajectory sensitivity such that (i) the flexible rotor system with elemental parametric uncertainties can be robustly stabilized, and (ii) a quadratic finite-horizon integral performance index, including a quadratic trajectory sensitivity term for the nominal flexible rotor system, can be minimized. In this paper, the robust stabilizability condition is proposed in terms of linear matrix inequalities (LMIs). Based on the OFA, an algebraic algorithm only involving the algebraic computation is derived in this paper for solving the nominal flexible rotor system feedback dynamic equations. By using the OFA and the LMI-based robust stabilizability condition, the robust-stable and quadratic finite-horizon optimal active vibration control problem for the uncertain flexible rotor system is transformed into a static constrained-optimization problem represented by the algebraic equations with constraint of LMI-based robust stabilizability condition. Then, for the static constrained-optimization problem, the HTGA is employed to find the robust-stable and quadratic finite-horizon optimal active vibration controllers of the uncertain flexible rotor system. An example is given to demonstrate the applicability of the proposed integrative approach.
机译:[[摘要]]通过研究鲁棒稳定条件,正交函数方法(OFA)和混合Taguchi遗传算法(HTGA),提出了一种集成方法来设计鲁棒稳定和二次有限元算法。具有低轨迹灵敏度的水平最优主动振动控制器,使得(i)具有基本参数不确定性的柔性转子系统能够得到稳固的稳定,以及(ii)二次有限水平积分性能指标,包括标称挠性的二次轨迹灵敏度项转子系统,可以最小化。本文根据线性矩阵不等式(LMI)提出了鲁棒的稳定性条件。基于OFA,本文推导了仅涉及代数计算的代数算法,用于求解标称挠性转子系统反馈动力学方程。通过使用OFA和基于LMI的鲁棒稳定条件,将不确定柔性转子系统的鲁棒稳定和二次有限水平最优主动振动控制问题转化为由代数方程表示的静态约束优化问题。基于LMI的鲁棒稳定性条件。然后,针对静态约束优化问题,采用HTGA方法来求解不确定柔性转子系统的鲁棒稳定和二次有限水平最优主动振动控制器。举例说明了所提出的整合方法的适用性。

著录项

  • 作者

    Chen Shinn-Horng;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号