首页> 外文期刊>Control Theory & Applications, IET >Refined instrumental variable parameter estimation of continuous-time Box–Jenkins models from irregularly sampled data
【24h】

Refined instrumental variable parameter estimation of continuous-time Box–Jenkins models from irregularly sampled data

机译:基于不规则采样数据的连续时间Box-Jenkins模型的精细仪器变量参数估计

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the estimation of continuous-time Box-Jenkins model parameters from irregularly sampled data. The Box-Jenkins structure has been successful in describing systems subject to coloured noise, since it contains two sub-models that feature the characteristics of both plant and noise systems. Based on plant-noise model decomposition, a two-step iterative procedure is proposed to solve the estimation problem, which consists of an instrumental variable method for the plant model and a prediction error method for the noise model. The proposed method is of low complexity and shows good estimation robustness and accuracy. Implementation issues are discussed to improve the computational efficiency. Numerical examples are presented to demonstrate the effectiveness of the proposed method.
机译:这项研究调查了不规则采样数据对连续时间Box-Jenkins模型参数的估计。 Box-Jenkins结构成功地描述了有色噪声的系统,因为它包含两个子模型,这些子模型具有植物和噪声系统的特征。基于植物噪声模型分解,提出了一种两步迭代的方法来解决估计问题,该过程由植物模型的仪器变量法和噪声模型的预测误差法组成。所提出的方法具有低复杂度并且显示出良好的估计鲁棒性和准确性。讨论了实现问题以提高计算效率。数值算例表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号