首页> 美国政府科技报告 >Sampled-Data Kalman Filtering and Multiple Model Adaptive Estimation for Infinite-Dimensional Continuous-Time Systems
【24h】

Sampled-Data Kalman Filtering and Multiple Model Adaptive Estimation for Infinite-Dimensional Continuous-Time Systems

机译:无限维连续时间系统的采样数据卡尔曼滤波和多模型自适应估计

获取原文

摘要

Kalman filtering and multiple model adaptive estimation (MMAE) methods have been applied by researchers in several engineering disciplines to a multitude of problems featuring a linear (or mildly nonlinear) model based on finite-dimensional differential (or difference) equations perturbed by random inputs. However, many real-world systems are more naturally modeled using an infinite-dimensional continuous-time linear systems model, such as those most naturally modeled as partial differential equations or time-delayed differential equations along with a possibly infinite-dimensional measurement model. The Kalman filtering technique was extended to encompass infinite- dimensional continuous-time systems with sampled-data measurements and a technique to approximate an infinite-dimensional continuous-time system model with an essentially equivalent finite-dimensional discrete-time model upon which a filtering algorithm could be based was developed. The tools developed during this research were demonstrated using an estimation problem based on a stochastic partial differential equation with an unknown noise environment.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号