首页> 外文期刊>Control Theory & Applications, IET >Spatial domain decomposition approach to dynamic compensator design for linear space-varying parabolic MIMO PDEs
【24h】

Spatial domain decomposition approach to dynamic compensator design for linear space-varying parabolic MIMO PDEs

机译:线性时空抛物线MIMO PDE动态补偿器设计的空间域分解方法

获取原文
获取原文并翻译 | 示例

摘要

This study addresses the problem of dynamic compensator design for exponential stabilisation of linear space-varying parabolic multiple-input-multiple-output (MIMO) partial differential equations (PDEs) subject to periodic boundary conditions. With the aid of the observer-based feedback control technique, an observer-based dynamic feedback compensator, whose implementation requires only a few actuators and sensors active over partial areas of the spatial domain, is constructed such that the resulting closed-loop coupled PDEs is exponentially stable. The spatial domain is divided into multiple subdomains according to the minimum of the actuators' number and the sensors' one. By Lyapunov direct method and two general variants of Poincare-Wirtinger inequality at each subdomain, sufficient conditions for the existence of such feedback compensator are developed and presented in terms of algebraic linear matrix inequalities (LMIs) in space. Based on the extreme value theorem, LMI-based sufficient and necessary conditions are presented for the feasibility of algebraic LMIs in space. Finally, numerical simulation results are presented to support the proposed design method.
机译:这项研究解决了动态补偿器设计的问题,该线性补偿的线性时空抛物线多输入多输出(MIMO)偏微分方程(PDE)受周期边界条件的影响。借助于基于观察者的反馈控制技术,构造了基于观察者的动态反馈补偿器,其实现仅需要在空间域的部分区域上活动的几个致动器和传感器,从而使得得到的闭环耦合PDE为指数稳定。根据执行器数量和传感器数量的最小值,空间域被分为多个子域。通过Lyapunov直接法和每个子域上Poincare-Wirtinger不等式的两个一般变体,为存在这种反馈补偿器提供了充分的条件,并根据空间中的代数线性矩阵不等式(LMI)给出了条件。基于极值定理,提出了基于LMI的充分必要条件,用于空间代数LMI的可行性。最后,给出了数值仿真结果以支持所提出的设计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号