首页> 外文期刊>IEEE Transactions on Automatic Control >Dynamic Compensator Design of Linear Parabolic MIMO PDEs in N-Dimensional Spatial Domain
【24h】

Dynamic Compensator Design of Linear Parabolic MIMO PDEs in N-Dimensional Spatial Domain

机译:N维空间域线性抛物型MIMO PDE的动态补偿器设计

获取原文
获取原文并翻译 | 示例

摘要

This article employs the observer-based output feedback control technique to deal with dynamic compensator design for a linear N-D parabolic partial differential equation (PDE) with multiple local piecewise control inputs and multiple non-collocated local piecewise observation outputs. These control inputs and observation outputs are provided by only few actuators and noncollocated sensors active over partial areas (or entire) of the spatial domain. An observer-based dynamic feedback compensator is constructed for exponential stabilization of the linear PDE. Poincare-Wirtinger inequality and its variant in N-D spatial domain are presented for the closed-loop stability analysis. By the Lyapunov direct method and Poincare-Wirtinger inequality and its variant, sufficient conditions on the existence of such feedback compensator of the linear PDE are developed, and presented in term of standard linear matrix inequalities. Well-posedness is also analyzed for both open-loop PDE and resulting closed-loop coupled PDEs within the C-0-semigroup framework. Finally, numerical simulation results are presented to support the proposed design method.
机译:本文采用了基于观察者的输出反馈控制技术来处理用于线性N-D抛物线部分微分方程(PDE)的动态补偿器设计,具有多个本地分段控制输入和多个非构建本地分段观察输出。这些控制输入和观察输出仅由少数致动器和非组织传感器提供,其在空间域的部分区域(或整个)上。构造了基于观察者的动态反馈补偿器,用于线性PDE的指数稳定。为闭环稳定性分析提供了庞的丝网不等式及其在N-D空间域中的变体。通过Lyapunov直接方法和Poincare-inderer不等式及其变体,开发了线性PDE的这种反馈补偿器的充分条件,并以标准的线性矩阵不等式呈现。对于开环PDE也分析良好的良好,并在C-0-eMigroup框架内产生闭环耦合PDE。最后,提出了数值模拟结果以支持所提出的设计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号