首页> 外文期刊>Control Theory & Applications, IET >Adaptive neural tracking control for a class of non-lower triangular non-linear systems with dead zone and unmodelled dynamics
【24h】

Adaptive neural tracking control for a class of non-lower triangular non-linear systems with dead zone and unmodelled dynamics

机译:一类具有死区和动力学未建模的非下三角非线性系统的自适应神经跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This study presents the disturbance observer-based adaptive neural tracking control approach for non-linear systems in non-strict-feedback form. The design difficulties including unmodelled dynamics and non-strict-feedback form are handled by resorting to a dynamic signal and the variable separation approach, respectively. A disturbance observer is constructed to cope with the effect of time varying disturbance. Neural networks are directly utilised to cope with the completely unknown non-linear functions and stochastic disturbances existing in systems. It is shown that the designed adaptive controller can guarantee that all the signals remain bounded and the desired signal can be tracked with a small domain of the origin. A numerical example is presented to illustrate the effectiveness of the proposed approach and an example of a real plant for one-link manipulator is provided to show the feasibility of the newly designed controller scheme.
机译:这项研究提出了一种基于干扰观测器的自适应神经跟踪控制方法,用于非严格反馈形式的非线性系统。设计难题包括未建模的动力学和非严格反馈形式,分别通过采用动态信号和可变分离方法来解决。构造了干扰观察器以应对时变干扰的影响。神经网络直接用于应对系统中存在的完全未知的非线性函数和随机干扰。结果表明,所设计的自适应控制器可以保证所有信号都保持有界,并且可以在源的较小范围内跟踪所需信号。给出了一个数值示例来说明所提出的方法的有效性,并提供了一个用于单连杆机械手的实际工厂的示例,以展示新设计的控制器方案的可行性。

著录项

  • 来源
    《Control Theory & Applications, IET》 |2019年第5期|672-682|共11页
  • 作者单位

    Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China;

    Bohai Univ, Coll Engn, Jinzhou 121013, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号