首页> 外文期刊>Control Systems Technology, IEEE Transactions on >ILC-Based Minimum Entropy Filter Design and Implementation for Non-Gaussian Stochastic Systems
【24h】

ILC-Based Minimum Entropy Filter Design and Implementation for Non-Gaussian Stochastic Systems

机译:非高斯随机系统基于ILC的最小熵滤波器的设计与实现

获取原文
获取原文并翻译 | 示例

摘要

A new filtering approach based on the idea of iterative learning control (ILC) is proposed for linear and non-Gaussian stochastic systems. The objective of filtering is to estimate the states of linear systems with non-Gaussian random disturbances so that the entropy of output error is made to monotonically decrease along the progress of batches of process operation. The term Batch is referred to a period of time when the process repeats itself. During a batch, the filter gain is kept fixed and state estimation is performed. Between any two adjacent batches, the filter gain is updated so that the entropy of closed-loop output error is reduced for the next batch. Analysis is carried out to explicitly determine the learning rates which lead to convergence of the overall algorithm. Experiments have been implemented on a laboratory-based process test rig to demonstrate the effectiveness of proposed filtering method.
机译:针对线性和非高斯随机系统,提出了一种基于迭代学习控制(ILC)思想的滤波方法。滤波的目的是估计具有非高斯随机扰动的线性系统的状态,以使输出误差的熵随着过程操作的批次而单调减小。术语“批处理”是指过程重复进行的一段时间。在批处理期间,滤波器增益保持固定,并执行状态估计。在任意两个相邻批次之间,将更新滤波器增益,以降低下一个批次的闭环输出误差的熵。进行分析以明确确定学习率,从而导致整个算法收敛。已经在基于实验室的过程测试台上进行了实验,以证明所提出的过滤方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号