首页> 外文期刊>IEEE Transactions on Automatic Control >Minimum Entropy Filtering for Multivariate Stochastic Systems With Non-Gaussian Noises
【24h】

Minimum Entropy Filtering for Multivariate Stochastic Systems With Non-Gaussian Noises

机译:具有非高斯噪声的多元随机系统的最小熵滤波

获取原文
获取原文并翻译 | 示例

摘要

In this note, a minimum entropy filtering algorithm is presented for a class of multivariate dynamic stochastic systems, which are represented by a set of time-varying difference equations and are subjected to the multivariate non-Gaussian stochastic inputs. Several new concepts including the hybrid random vector, hybrid probability and hybrid entropy are firstly established to describe the probabilistic property of the estimation errors. New relationships are provided between the probability density functions (PDF's) of the multivariate stochastic input and output for different mapping cases. Recursive algorithms are then proposed to design the real-time sub-optimal filter so that the hybrid entropy of the estimation error can be minimized. Finally, an improved algorithm is provided through the on-line tuning of the weighting matrices so as to guarantee the local stability of the error system.
机译:在本说明中,为一类多元动态随机系统提出了一种最小熵过滤算法,该算法由一组时变差分方程表示,并受到多元非高斯随机输入的影响。首先建立了包括混合随机矢量,混合概率和混合熵在内的几种新概念来描述估计误差的概率性质。在不同映射情况下,多元随机输入和输出的概率密度函数(PDF)之间提供了新的关系。然后,提出了递归算法来设计实时次优滤波器,以使估计误差的混合熵最小。最后,通过对加权矩阵进行在线调整,提供了一种改进的算法,以保证误差系统的局部稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号