首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Implementation of Dynamic Programming for src='/images/tex/388.gif' alt='n'> -Dimensional Optimal Control Problems With Final State Constraints
【24h】

Implementation of Dynamic Programming for src='/images/tex/388.gif' alt='n'> -Dimensional Optimal Control Problems With Final State Constraints

机译:动态编程的实现,用于 src =“ / images / tex / 388.gif” alt =“ n”> 具有最终状态约束的最优控制问题

获取原文
获取原文并翻译 | 示例

摘要

Many optimal control problems include a continuous nonlinear dynamic system, state, and control constraints, and final state constraints. When using dynamic programming to solve such a problem, the solution space typically needs to be discretized and interpolation is used to evaluate the cost-to-go function between the grid points. When implementing such an algorithm, it is important to treat numerical issues appropriately. Otherwise, the accuracy of the found solution will deteriorate and global optimality can be restored only by increasing the level of discretization. Unfortunately, this will also increase the computational effort needed to calculate the solution. A known problem is the treatment of states in the time–state space from which the final state constraint cannot be met within the given final time. In this brief, a novel method to handle this problem is presented. The new method guarantees global optimality of the found solution, while it is not restricted to a specific class of problems. Opposed to that, previously proposed methods either sacrifice global optimality or are applicable to a specific class of problems only. Compared to the basic implementation, the proposed method allows the use of a substantially lower level of discretization while achieving the same accuracy. As an example, an academic optimal control problem is analyzed. With the new method, the evaluation time was reduced by a factor of about 300, while the accuracy of the solution was maintained.
机译:许多最优控制问题包括连续非线性动态系统,状态和控制约束以及最终状态约束。使用动态编程解决此问题时,通常需要离散化解决方案空间,并使用插值法评估网格点之间的成本函数。在实施这种算法时,适当地处理数值问题很重要。否则,只能通过增加离散化程度来降低找到的解决方案的准确性,并可以恢复全局最优性。不幸的是,这也将增加计算解所需的计算量。一个已知的问题是在时间状态空间中处理状态,在给定的最终时间内无法满足最终状态约束。在此简介中,提出了一种解决此问题的新颖方法。新方法可确保找到的解决方案具有全局最优性,而不仅限于特定类别的问题。与此相反,先前提出的方法要么牺牲了全局最优性,要么仅适用于特定类别的问题。与基本实施方式相比,所提出的方法允许使用实质上较低水平的离散化,同时实现相同的精度。例如,分析了一个理论上的最优控制问题。使用新方法,评估时间减少了约300倍,同时保持了解决方案的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号