首页> 外文学位 >Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching.
【24h】

Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching.

机译:基于近似动态编程的解决方案,用于固定最终时间的最佳控制和最佳切换。

获取原文
获取原文并翻译 | 示例

摘要

Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems.
机译:本文研究了基于近似动态规划(ADP)框架的神经网络的最优解,以解决新型工程和非工程问题以及相关的困难和挑战。在随附的八篇论文中,ADP框架用于解决固定最终时间问题(也称为终端控制问题)和具有切换性质的问题。论文1中提出了一种基于ADP的算法来解决带有软终端约束的固定最终时间问题,其中利用了具有单个权重集的单个神经网络。论文2研究了具有硬终端约束的固定最终时间问题。基于ADP的固定最终时间算法的最优性分析是论文3的主题,其中表明,所提出的算法导致提供了一定条件保持的全局最优解。之后,论文1至3的发展被用于解决更具挑战性的问题,即开关系统的最佳控制。这类问题分为固定模式序列问题(第4和5页)和自由模式序列问题(第6和7页)。这两个类别中的每一个都进一步分为自主子系统的问题(第4和6章)和受控子系统的问题(第5和7章)。开发了不同的基于ADP的算法,并给出了所提出的迭代算法的收敛性证明。此外,在论文8中,为在线学习最佳切换解决方案提供了扩展,以解决具有模型不确定性的问题。对每个理论开发都使用不同的实际问题或基准问题进行了数值分析。

著录项

  • 作者

    Heydari, Ali.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Aerospace engineering.;Applied mathematics.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号