首页> 外文期刊>Control Systems Technology, IEEE Transactions on >A Robust Adaptive RBFNN Augmenting Backstepping Control Approach for a Model-Scaled Helicopter
【24h】

A Robust Adaptive RBFNN Augmenting Backstepping Control Approach for a Model-Scaled Helicopter

机译:模型规模直升机的鲁棒自适应RBFNN增强Backstepping控制方法

获取原文
获取原文并翻译 | 示例

摘要

This brief investigates the trajectory tracking problem for a model-scaled helicopter with a novel robust adaptive radial basis function neural network (RBFNN) augmenting backstepping control approach. The helicopter model is first decomposed into an approximate strict-feedback format with some unmodeled dynamics. Backstepping technique is employed as the main control framework, which is augmented by robust RBFNNs to approximate the unmodeled dynamics. Each robust RBFNN utilizes an th-order smooth switching function to combine a conventional RBFNN with a robust control. The conventional RBFNN dominates in the neural active region, while the robust control retrieves the transient outside the active region, so that the stability range can be widened. In addition, command filters are employed to approximate derivatives of the virtual controls in the backstepping procedure. This systematic design methodology is proven to achieve ultimate boundedness of the closed-loop helicopter system. Simulations validate the effectiveness of the proposed control approach.
机译:本文简要介绍了一种具有新型鲁棒自适应径向基函数神经网络(RBFNN)增强反推控制方法的模型缩放直升机的轨迹跟踪问题。首先将直升机模型分解为具有一些未建模动力学的近似严格反馈格式。采用Backstepping技术作为主要控制框架,并通过健壮的RBFNN对其进行增强,以近似未建模的动力学。每个鲁棒的RBFNN利用三阶平滑切换功能将常规的RBFNN与鲁棒控制相结合。传统的RBFNN在神经活动区域中占主导地位,而鲁棒控制则在活动区域​​之外检索瞬态,因此可以扩大稳定性范围。另外,在后退过程中,使用命令过滤器来近似虚拟控件的派生。事实证明,这种系统的设计方法可以达到闭环直升机系统的极限。仿真验证了所提出的控制方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号