首页> 外文期刊>IEEE Transactions on Control Systems Technology >Variational Bayesian Gaussian Mixture Regression for Soft Sensing Key Variables in Non-Gaussian Industrial Processes
【24h】

Variational Bayesian Gaussian Mixture Regression for Soft Sensing Key Variables in Non-Gaussian Industrial Processes

机译:非高斯工业过程中软传感关键变量的变分贝叶斯高斯混合回归

获取原文
获取原文并翻译 | 示例

摘要

In this brief, a variational Bayesian Gaussian mixture regression (VBGMR) method is developed for soft sensing key quality-related variables in a non-Gaussian industrial process. Traditional Gaussian mixture regression (GMR) is based on Gaussian mixture model (GMM) and can be easily stuck into the issue of model selection since the GMM model generally requires a large amount of local components so as to achieve desirable predicting performances. However, such assignation can be computationally extensive and may also result in some numerical issues since only a few components are positively adopted. In this brief, a fully Bayesian modeling method is proposed for GMR-based soft sensor development. Conjugate Bayesian prior is defined for each empirical parameter, while a Dirichlet process prior is further defined on the mixture component. The full Bayesian GMR is first validated on a numerical case study and then applied to the industrial hydrogen manufacturing units, both compared with GMR. The results demonstrate feasibility and reliability of the new soft sensor and show that VBGMR generally outperforms GMR with the requirement of only a few activated components.
机译:在此简介中,开发了一种变分贝叶斯高斯混合回归(VBGMR)方法,用于在非高斯工业过程中软检测与质量相关的关键变量。传统的高斯混合回归(GMR)基于高斯混合模型(GMM),并且由于GMM模型通常需要大量的局部分量才能实现理想的预测性能,因此很容易陷入模型选择的问题。但是,由于仅积极地采用了少数几个组件,因此这种分配可能在计算上很广泛,并且还可能导致一些数值问题。在本文中,为基于GMR的软传感器开发提出了一种完全的贝叶斯建模方法。为每个经验参数定义了共轭贝叶斯先验,而在混合成分上进一步定义了Dirichlet过程先验。完整的贝叶斯GMR首先通过数值案例研究验证,然后应用于工业制氢装置,两者均与GMR进行了比较。结果证明了新型软传感器的可行性和可靠性,并表明VBGMR通常只需要几个激活的组件即可胜过GMR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号