首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Bayesian Regularized Gaussian Mixture Regression with Application to Soft Sensor Modeling for Multi-Mode Industrial Processes
【24h】

Bayesian Regularized Gaussian Mixture Regression with Application to Soft Sensor Modeling for Multi-Mode Industrial Processes

机译:贝叶斯正则化高斯混合回归及其在多模式工业过程软传感器建模中的应用

获取原文

摘要

The Gaussian mixture regression (GMR) is an effective approach to predict those difficult-to-measure quality variables for industrial processes with multiple operating modes. However, the GMR easily gets stuck into overfitting in the scenario of insufficient labeled samples, particularly when the dimensionality of the secondary variables is high. To alleviate this issue, this paper proposes the Bayesian regularized GMR (BGMR), and applies it to soft sensor modeling. In the BGMR, an alternative model structure, which explicitly considers the functional dependency between the primary and secondary variables, is presented to facilitate the Bayesian regularization that is widely used for anti-overfitting. In addition, an efficient learning procedure is developed for the BGMR based on the expectation-maximization algorithm. The performance of the BGMR is evaluated through two case studies including a numerical example and a real-life industrial process, which demonstrates the effectiveness of the proposed approach.
机译:高斯混合回归(GMR)是一种有效的方法,可以预测具有多种运行模式的工业过程中那些难以测量的质量变量。但是,在标记的样本不足的情况下,尤其是当次级变量的维数较高时,GMR容易陷入过度拟合。为了缓解这个问题,本文提出了贝叶斯正则化GMR(BGMR),并将其应用于软传感器建模。在BGMR中,提出了一种替代模型结构,该模型结构明确考虑了主要变量和次要变量之间的功能依赖性,以促进广泛用于反过拟合的贝叶斯正则化。此外,基于期望最大化算法为BGMR开发了一种有效的学习程序。通过两个案例研究对BGMR的性能进行了评估,包括一个数值示例和一个实际的工业过程,这证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号