首页> 外文OA文献 >Student’s-t Mixture Regression-Based Robust Soft Sensor Development for Multimode Industrial Processes
【2h】

Student’s-t Mixture Regression-Based Robust Soft Sensor Development for Multimode Industrial Processes

机译:学生-T混合混合基于回归的复发软件软传感器开发,用于多模工业过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Because of multiple manufacturing phases or operating conditions, a great many industrial processes work with multiple modes. In addition, it is inevitable that some measurements of industrial variables obtained through hardware sensors are incorrectly observed, recorded or imported into databases, resulting in the dataset available for statistic analysis being contaminated by outliers. Unfortunately, these outliers are difficult to recognize and remove completely. These process characteristics and dataset imperfections impose challenges on developing high-accuracy soft sensors. To resolve this problem, the Student’s-t mixture regression (SMR) is proposed to develop a robust soft sensor for multimode industrial processes. In the SMR, for each mixing component, the Student’s-t distribution is used instead of the Gaussian distribution to model secondary variables, and the functional relationship between secondary and primary variables is explicitly considered. Based on the model structure of the SMR, a computationally efficient parameter-learning algorithm is also developed for SMR. Results conducted on two cases including a numerical example and a real-life industrial process demonstrate the effectiveness and feasibility of the proposed approach.
机译:由于多种制造阶段或操作条件,许多工业过程都有多种模式。此外,不可避免地,通过硬件传感器获得的工业变量的​​一些测量不正确地观察,记录或导入数据库,导致数据集可用于统计分析因异常值污染。不幸的是,这些异常值很难识别和完全删除。这些工艺特征和数据集缺陷件对开发高精度软传感器的挑战造成挑战。为了解决这个问题,提出了学生-T混合回归(SMR),为多模工业过程开发强大的软传感器。在SMR中,对于每个混合组件,使用学生-T分布代替高斯分布到模型次要变量,并且明确地考虑次要和初级变量之间的功能关系。基于SMR的模型结构,还为SMR开发了一种计算有效的参数学习算法。在包括数值示例的两种情况下进行的结果表明了所提出的方法的有效性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号