首页> 外文期刊>IEEE Transactions on Control Systems Technology >Constrained Inverse Optimal Control With Application to a Human Manipulation Task
【24h】

Constrained Inverse Optimal Control With Application to a Human Manipulation Task

机译:用应用于人类操纵任务的约束逆最佳控制

获取原文
获取原文并翻译 | 示例

摘要

This brief presents an inverse optimal control methodology and its application to training a predictive model of human motor control from a manipulation task. It introduces a convex formulation for learning both objective function and constraints of an infinite-horizon constrained optimal control problem with nonlinear system dynamics. The inverse approach utilizes Bellman's principle of optimality to formulate the infinite-horizon optimal control problem as a shortest path problem and the Lagrange multipliers to identify constraints. We highlight the key benefit of using the shortest path formulation, i.e., the possibility of training the predictive model with short and selected trajectory segments. The method is applied to training a predictive model of movements of a human subject from a manipulation task. The study indicates that individual human movements can be predicted with low error using an infinite-horizon optimal control problem with constraints on the shoulder movement.
机译:本简要介绍了逆最佳控制方法及其应用于培训从操作任务的人机控制预测模型。它引入了学习无限范围的目标函数和约束的凸形制剂,其与非线性系统动态的无限范围限制的最佳控制问题。逆方法利用Bellman的最优性原则,以将无限的地平线最佳控制问题制定为最短路径问题,并且拉格朗日乘法器识别约束。我们突出了使用最短路径制定的关键优势,即使用短路和选定的轨迹段培训预测模型的可能性。该方法用于训练来自操纵任务的人类受试者的动作预测模型。该研究表明,使用肩部运动的约束,可以使用无限范围的最佳控制问题预测单个人类运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号