首页> 外文期刊>IEEE Transactions on Control Systems Technology >Mixtures of Probabilistic PCA With Common Structure Latent Bases for Process Monitoring
【24h】

Mixtures of Probabilistic PCA With Common Structure Latent Bases for Process Monitoring

机译:概率PCA与通用结构潜在基础的混合物,用于过程监控

获取原文
获取原文并翻译 | 示例

摘要

In this brief, we propose the mixtures of proba-bilistic principal component analyzers with latent bases having a common structure for modeling and monitoring multimodal processes. The proposed modeling framework attributes a joint distribution to each element of the latent bases across all the analyzers for bringing a consistent structure for the local models that correspond to various operating modes. Hierarchical prior distributions are attributed to regularize the parameters for obtaining sparse model structures. We employ the variational Bayesian expectation-maximization algorithm to train the model from the observed data. Faults are detected online if nonconformity of a data point to the developed model is identified. Furthermore, we identify faulty latent variables, and the process variables, which are significantly contributing to the faulty latent variables, are isolated by exploiting the unique structure of the model. We illustrate our proposed approach based on the simulations conducted on the Tennessee Eastman benchmark process.
机译:在本文中,我们提出了概率主成分分析仪与潜在碱基的混合体,这些潜在碱基具有用于建模和监视多峰过程的通用结构。所提出的建模框架将联合分布归因于所有分析仪的潜在碱基的每个元素,从而为与各种操作模式相对应的局部模型带来一致的结构。分层先验分布可归因于对参数进行正则化以获得稀疏模型结构。我们采用变分贝叶斯期望最大化算法从观测数据中训练模型。如果发现数据点与开发的模型不符,则会在线检测故障。此外,我们可以识别出潜在的潜在变量,并通过利用模型的独特结构来隔离对潜在的潜在变量有重大贡献的过程变量。我们基于田纳西州伊士曼基准测试过程进行的模拟说明了我们提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号