首页> 外文期刊>Control of Network Systems, IEEE Transactions on >POSE.3C: Prediction-Based Opportunistic Sensing Using Distributed Classification, Clustering, and Control in Heterogeneous Sensor Networks
【24h】

POSE.3C: Prediction-Based Opportunistic Sensing Using Distributed Classification, Clustering, and Control in Heterogeneous Sensor Networks

机译:构成.3C:使用分布式分类,聚类和控制在异构传感器网络中的基于预测的机会主义感应

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a distributed algorithm, called prediction-based opportunistic sensing using distributed classification, clustering, and control (POSE.3C), for self adaptation of sensor networks for energy management. The underlying 3C network autonomy concept enables utilization of the target classification information to form dynamic clusters around the predicted target position via selection of sensor nodes with the highest energies and maximum geometric diversity. Furthermore, the nodes can probabilistically control their heterogeneous devices to track targets of interest and minimize energy consumption in a completely distributed manner. Theoretical properties of the POSE.3C network are established and derived in terms of the network lifetime and missed detection characteristics. The algorithm is validated through extensive simulations that demonstrate a significant increase in the network lifetime as compared to other network control approaches, while providing high tracking accuracy and low missed detection rates.
机译:本文介绍了一种分布式算法,使用分布式分类,聚类和控制(姿势3c)称为基于预测的机会主义感应,用于自适应传感器网络的能量管理。底层的3C网络自治概念能够利用目标分类信息,通过选择具有最高能量和最大几何分集的传感器节点选择来形成围绕预测的目标位置的动态簇。此外,节点可以概率地控制其异构设备以跟踪感兴趣的目标并以完全分布的方式最小化能量消耗。在网络寿命和错过的检测特征方面建立和得出了姿势的理论特性。通过广泛的仿真验证了算法,该验证了与其他网络控制方法相比,网络寿命的显着增加,同时提供高跟踪精度和低错过的检测速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号