首页> 外文期刊>Control Engineering Practice >Neural network based adaptive event trigger control for a class of electromagnetic suspension systems
【24h】

Neural network based adaptive event trigger control for a class of electromagnetic suspension systems

机译:一类电磁悬架系统的神经网络自适应事件触发控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a neural network (NN) based event trigger control problem of electromagnetic active suspension system is solved. Due to the limitation of vehicle communication resources, the control schemes utilizing fixed threshold and relative threshold are presented respectively to reduce the communication burden between actuator and controller. Firstly, the fixed threshold-based trigger mechanism is developed while the algebraic loop problem is addressed using the special characteristics of NN basis function. Second, to further avoid a large measurement error, the time-varying threshold-based event trigger approach is built. The designed event trigger controllers can make the vertical displacement and speed of the electromagnetic suspension system near zero. In the design process, the radial basis function neural networks (RBFNNs) are employed to approximate unknown terms. Then, all signals in the resulted system are proved to be bounded, and the Zeno behavior is avoided successfully. Finally, the feasibility and rationality of the two methods are proved by the simulation analysis base on the electromagnetic suspension system.
机译:本文解决了电磁有源悬架系统的基于神经网络(NN)的事件触发控制问题。由于车辆通信资源的限制,利用固定阈值和相对阈值的控制方案分别呈现,以减少致动器和控制器之间的通信负担。首先,在使用NN基函数的特殊特征来解决代数环问题的同时,开发了固定阈值的触发机制。其次,为了进一步避免大的测量误差,构建了基于时变的阈值的事件触发方法。设计的事件触发器控制器可以使电磁悬架系统的垂直位移和速度接近零。在设计过程中,径向基函数神经网络(RBFNNS)用于近似未知术语。然后,证明了所得系统中的所有信号被证明是有界的,并且成功避免了ZENO行为。最后,通过电磁悬架系统的模拟分析基础证明了这两种方法的可行性和合理性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号