首页> 外文期刊>Neurocomputing >Observer-based adaptive event-triggered tracking control for nonlinear MIMO systems based on neural networks technique
【24h】

Observer-based adaptive event-triggered tracking control for nonlinear MIMO systems based on neural networks technique

机译:基于神经网络技术的非线性MIMO系统的基于观察者的自适应事件触发跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the issue of adaptive neural networks event-triggered control for nonstrict-feedback nonlinear multi-input-multi-output(MIMO) systems containing unmeasured states is investigated. All unmeasured states are approximated by using neural networks observer. Meanwhile, the neural networks are used to estimate the unknown continuous function at each step of recursion. Then, an observer-based adaptive neural networks event-triggered tracking control strategy is proposed based on backstepping technique. The designed controller enables the outputs of the system to track the target trajectory within a small bounded error range, and all signals in the closed-loop system are bounded.(c) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,研究了包含未测量状态的非防止反馈非线性多输入多输出(MIMO)系统的自适应神经网络事件触发控制。所有未测量状态都是通过使用神经网络观察者来近似的。同时,神经网络用于估计每个递归步骤中的未知连续功能。然后,基于BackStepping技术提出了一种基于观察者的自适应神经网络事件触发的跟踪控制策略。设计的控制器使系统的输出能够跟踪小界误差范围内的目标轨迹,闭环系统中的所有信号都被界定。(c)2020 Elsevier B.V.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号