首页> 外文期刊>Control Engineering Practice >A multi-time-scale fusion prediction model for the gas utilization rate in a blast furnace
【24h】

A multi-time-scale fusion prediction model for the gas utilization rate in a blast furnace

机译:高炉煤气利用率的多时间尺度融合预测模型

获取原文
获取原文并翻译 | 示例

摘要

The main operations for a blast furnace are hot-blast supply and burden distribution, which adjust the gas utilization rate (GUR) on different time scales. However, most researches only focused on fixed-time scale relationships between the operations and the GUR. This paper presents a multi-time-scale fusion model to predict the GUR. First, this paper analyzes the multi-time-scale characteristics between the operations and the GUR based on the iron-making mechanisms. Then, this paper explains a decomposition method for the GUR based on empirical mode decomposition and a reconstruction method to get a short-time-scale part the GUR (SPGUR) and a long-time-scale part of the GUR (LPGUR). Next, this paper presents a short-time-scale model to describe the relationship between the hot-blast supply and the SPGUR and a long-time-scale model, between the burden distribution and the LPGUR. Finally, this paper fuses the results of the two models to predict the GUR. The analysis based on actual run data shows that the method predicts the GUR more accurately than that predicted based on a fixed time scale.
机译:高炉的主要操作是热风供应和炉料分配,可在不同的时间范围内调节气体利用率(GUR)。但是,大多数研究仅关注运营与GUR之间的固定时间比例关系。本文提出了一种多时标融合模型来预测GUR。首先,本文基于炼铁机理分析了操作与GUR之间的多时标特性。然后,本文解释了基于经验模式分解的GUR分解方法,以及获得GUR的短时部分(SPGUR)和GUR的长时部分(LPGUR)的重构方法。接下来,本文提供了一个短期模型来描述热风供应与SPGUR之间的关系,以及一个长期模型,即负荷分布与LPGUR之间的关系。最后,本文融合了两个模型的结果来预测GUR。基于实际运行数据的分析表明,与基于固定时间尺度的预测相比,该方法对GUR的预测更为准确。

著录项

  • 来源
    《Control Engineering Practice》 |2019年第11期|104120.1-104120.11|共11页
  • 作者单位

    School of Automation China University of Geosciences Wuhan 430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan 430074 China;

    School of Automation China University of Geosciences Wuhan 430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan 430074 China School of Engineering Tokyo University of Technology Hachioji Tokyo 192-0982 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Blast furnace; Gas utilization rate; Multi-time scale; Empirical mode decomposition; Reconstruction;

    机译:高炉;瓦斯利用率;多时间刻度;经验模式分解;重建;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号