首页> 外文期刊>Control Engineering Practice >A sparse fault degradation oriented fisher discriminant analysis (FDFDA) algorithm for faulty variable isolation and its industrial application
【24h】

A sparse fault degradation oriented fisher discriminant analysis (FDFDA) algorithm for faulty variable isolation and its industrial application

机译:面向稀疏故障退化的费希尔判别分析(FDFDA)算法用于故障变量隔离及其工业应用

获取原文
获取原文并翻译 | 示例

摘要

In a fault process, the variables may be influenced differently. In order to improve the diagnosis performance, it is an important issue to isolate those significant faulty variables that cover informative fault effects. However, those variables are selected one by one and their correlations are not considered in the previous work. As sparse-relevant methods can automatically and efficiently isolate significant correlated variables, it is natural to consider applying the criteria of sparsity to separate the significantly influenced faulty variables and analyze them by specific methods. First, the sparse version of the fault degradation oriented Fisher discriminant analysis (FDFDA) algorithm is proposed to produce informative discriminant directions with sparse loadings. Subsequently, a faulty variable selection strategy is proposed based on the sparse FDFDA algorithm to select significantly influenced faulty variables. By iteratively isolating correlated variables along each sparse fault direction, all the faulty variables can be automatically selected until the left fault data and normal data share the similar characteristics. Therefore, the whole measurement variables can be divided into faulty variable set and normal variable set. Then different fault diagnosis models can be developed according to their different characteristics for each fault class. For online application, a probabilistic fault diagnosis strategy is proposed to determine the fault cause of the new sample by the largest synthetic probability that integrates the diagnosis results of two variable sets. The performance of the proposed fault diagnosis method is illustrated using the data from the cut-made process of cigarette.
机译:在故障过程中,变量可能受到不同的影响。为了提高诊断性能,重要的问题是隔离那些覆盖信息性故障影响的重要故障变量。但是,这些变量是一个接一个地选择的,在以前的工作中没有考虑它们的相关性。由于稀疏相关的方法可以自动有效地隔离重要的相关变量,因此自然可以考虑应用稀疏性标准来分离受到重大影响的故障变量并通过特定方法进行分析。首先,提出了面向故障退化的Fisher判别分析(FDFDA)算法的稀疏版本,以产生信息量较小的负载的判别方向。随后,提出了一种基于稀疏FDFDA算法的故障变量选择策略,以选择影响较大的故障变量。通过沿每个稀疏故障方向迭代隔离相关变量,可以自动选择所有故障变量,直到左故障数据和法线数据具有相似的特征为止。因此,整个测量变量可以分为故障变量集和正常变量集。然后可以根据每种故障类别的不同特征,开发不同的故障诊断模型。对于在线应用,提出了一种概率故障诊断策略,通过最大概率综合两个变量集的诊断结果,确定新样本的故障原因。利用香烟切割过程中的数据说明了所提出的故障诊断方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号