首页> 外文期刊>Control Engineering Practice >Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system
【24h】

Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system

机译:智能AUV导航系统通过模糊逻辑对Kalman滤波器进行自适应调整

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the implementation of an intelligent navigation system, based on the integrated use of the global positioning system (GPS) and several inertial navigation system (INS) sensors, for autonomous underwater vehicle (AUV) applications. A simple Kalman filter (SKF) and an extended Kalman filter (EKF) are proposed to be used subsequently to fuse the data from the INS sensors and to integrate them with the GPS data. The paper highlights the use of fuzzy logic techniques to the adaptation of the initial statistical assumption of both the SKF and EKF caused by possible changes in sensor noise characteristics. This adaptive mechanism is considered to be necessary as the SKF and EKF can only maintain their stability and performance when the algorithms contain the true sensor noise characteristics. In addition, fault detection and signal recovery algorithms during the fusion process to enhance the reliability of the navigation systems are also discussed herein. The proposed algorithms are implemented to real experimental data obtained from a series of AUV trials conducted by running the low-cost Hammerhead AUV, developed by the University of Plymouth and Cranfield University.
机译:本文基于全球定位系统(GPS)和几种惯性导航系统(INS)传感器的综合使用,描述了一种智能导航系统的实现,用于自动水下航行器(AUV)应用。提出了一个简单的卡尔曼滤波器(SKF)和一个扩展的卡尔曼滤波器(EKF),以随后融合来自INS传感器的数据并将其与GPS数据集成。本文重点介绍了使用模糊逻辑技术来适应由于传感器噪声特性可能发生变化而导致的SKF和EKF的初始统计假设的变化。这种自适应机制被认为是必要的,因为只有当算法包含真实的传感器噪声特性时,SKF和EKF才能保持其稳定性和性能。此外,本文还讨论了融合过程中的故障检测和信号恢复算法,以增强导航系统的可靠性。通过运行由普利茅斯大学和克兰菲尔德大学开发的低成本Hammerhead AUV进行的一系列AUV试验获得的真实实验数据,可以实现所提出的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号