首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
【2h】

Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

机译:组合导航系统的模糊自适应Cubature卡尔曼滤波

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
机译:针对GPS / INS(全球定位系统/惯性导航系统)的集成导航系统,提出了一种基于库尔曼卡尔曼滤波器(CKF)和模糊逻辑自适应系统(FLAS)相结合的传感器融合方法。为了避免系统模型中的数值不稳定,已在CKF中采用了三次球面半径的定律。在处理导航集成中,基于非线性滤波器的位置和速度状态估计的性能可能由于车辆动力学不确定性而引起的建模误差而严重降低。为了解决通过个人经验或数值模拟选择过程噪声协方差的缺点,通过引入FLAS来调整过程噪声协方差矩阵的加权因子,提出了一种称为模糊自适应库曼卡尔曼滤波(FACKF)的方案。 FLAS被纳入CKF框架中,作为一种基于发散度(DOD)参数信息及时实现过程噪声协方差矩阵调整的机制。与扩展卡尔曼滤波器(EKF),无味卡尔曼滤波器(UKF)和CKF方法相比,所提出的FACKF算法显示出有希望的精度改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号