首页> 外文期刊>Control Engineering Practice >A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem
【24h】

A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem

机译:基于DAMADICS基准问题的神经模糊多模型观测器方法用于鲁棒故障诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new framework for fault detection and isolation (FDI) based on neuro-fuzzy multiple modelling together with robust optimal de-coupling of observers. This new paradigm is called the 'Neuro-Fuzzy and De-coupling Fault Diagnosis Scheme' (NFDFDS). Multiple operating points are taken care of through the NF modelling framework. The structure also provides residuals that are de-coupled to 'unknown inputs', making use of the earlier research on unknown input de-coupling. The NF paradigm exploits the combined abilities of neural networks and fuzzy logic and is an efficient modelling tool for non-linear dynamic systems because of its approximation and reasoning capabilities. The paper also provides a comparative study of NFDFDS with the Extended Unknown Input Observer (EUIO) for FDI, using the DAMADICS benchmark example.
机译:本文提出了一种基于神经模糊多重建模以及观察者鲁棒性最佳解耦的故障检测与隔离(FDI)新框架。这种新的范例称为“神经模糊和解耦故障诊断方案”(NFDFDS)。通过NF建模框架可以处理多个操作点。该结构还利用早期对未知输入去耦的研究,提供了与“未知输入”解耦的残差。 NF范例利用了神经网络和模糊逻辑的组合功能,由于其逼近和推理能力,因此是非线性动态系统的有效建模工具。本文还使用DAMADICS基准示例,对带有FDI的扩展未知输入观察器(EUIO)的NFDFDS进行了比较研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号