首页> 外文期刊>Control Engineering Practice >Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process
【24h】

Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process

机译:基于振动谱的特征提取与选择在估算球磨机磨削负荷参数中的应用

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction and selection are important issues in soft sensing and complex nonlinear system modeling. In this paper, a new feature extraction and selection approach based on the vibration frequency spectrum is proposed to estimate the load parameters of wet ball mill in grinding process. This approach can simplify the modeling process. In this study, the vibration acceleration signals are first transformed into the frequency spectrum by fast Fourier transform (FFT). Then the candidate features are extracted and selected from the frequency spectrum, which include characteristic frequency sub-bands, spectral principal components, and features of local peaks. Mutual information, spectral segment clustering and kernel principal component analysis are used to obtain these candidate features. Finally, a combinatorial optimization method based on adaptive genetic algorithm selects the input sub-set and parameters of the soft sensor model simultaneously. This approach is successfully applied in a laboratory scale wet ball mill. The test results show that the proposed approach is effective for modeling the parameters of mill load.
机译:特征提取和选择是软传感和复杂非线性系统建模中的重要问题。提出了一种基于振动频谱特征提取和选择的新方法,用于估算湿式球磨机磨削过程中的载荷参数。这种方法可以简化建模过程。在这项研究中,首先通过快速傅立叶变换(FFT)将振动加速度信号变换为频谱。然后从频谱中提取并选择候选特征,包括特征频率子带,频谱主成分和局部峰值特征。互信息,谱段聚类和核主成分分析用于获得这些候选特征。最后,基于自适应遗传算法的组合优化方法同时选择了软传感器模型的输入子集和参数。该方法已成功应用于实验室规模的湿式球磨机。测试结果表明,该方法对轧机负荷参数建模是有效的。

著录项

  • 来源
    《Control Engineering Practice》 |2012年第10期|p.991-1004|共14页
  • 作者单位

    State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China,Unit 92941, PLA, Huludao 125001, China;

    State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China,Research Center of Automation, Northeastern University, Shenyang 11004, China;

    State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China,Departamento de Control Automatico, C1NVESTAV-1PN, Mexico City 07360, Mexico;

    State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China,College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    soft sensor; frequency spectrum; mill load; feature extraction; feature selection; combinatorial optimization;

    机译:软传感器频谱轧机负荷特征提取;特征选择;组合优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号