首页> 外文期刊>IEEE transactions on automation science and engineering >Modeling Load Parameters of Ball Mill in Grinding Process Based on Selective Ensemble Multisensor Information
【24h】

Modeling Load Parameters of Ball Mill in Grinding Process Based on Selective Ensemble Multisensor Information

机译:基于选择性集成多传感器信息的球磨机磨削载荷参数建模

获取原文
获取原文并翻译 | 示例

摘要

Due to complex dynamic characteristics of the ball mill system, it is difficult to measure load parameters inside the ball mill. It has been noticed that the traditional single-model and ensemble-model based soft sensor approaches demonstrate weak generalization power. Also, mill motor current, feature subsets of the shell vibration and acoustical frequency spectra contain different useful information. To achieve better solutions and overcome these problems mentioned above, a selective ensemble multisource information approach is proposed in this paper. Only the useful feature subsets of vibration and acoustical frequency spectra are portioned and selected. Some modeling techniques, such as fast Fourier transform (FFT), mutual information (MI), kernel partial least square (KPLS), brand and band (BB), and adaptive weighting fusion (AWF), are combined effectively to model the mill load parameters. The simulation is conducted using real data from a laboratory-scale ball mill. The results show that our proposed approach can effectively fusion the shell vibration, acoustical and mill motor current signals with improved model generalization.
机译:由于球磨机系统复杂的动态特性,因此很难测量球磨机内部的负载参数。已经注意到,传统的基于单模型和集成模型的软传感器方法表现出较弱的泛化能力。另外,轧机电机电流,壳体振动的特征子集和声学频谱也包含不同的有用信息。为了实现更好的解决方案并克服上述问题,本文提出了一种选择性集成多源信息方法。仅对振动和声学频谱的有用特征子集进行分割和选择。有效地组合了一些建模技术,例如快速傅立叶变换(FFT),互信息(MI),核偏最小二乘(KPLS),品牌和频带(BB)和自适应加权融合(AWF)参数。使用实验室规模的球磨机的真实数据进行模拟。结果表明,我们提出的方法可以有效地融合壳体振动,声学和轧机电动机电流信号,并具有改进的模型泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号