首页> 外文期刊>Control Engineering Practice >Robust adaptive controller based on evolving linear model applied to a Ball-Handling mechanism
【24h】

Robust adaptive controller based on evolving linear model applied to a Ball-Handling mechanism

机译:基于演化线性模型的鲁棒自适应控制器应用于球操纵机构

获取原文
获取原文并翻译 | 示例

摘要

The increasing complexity and permanent growth of real-world robotics formidable challenges demand that most control systems be intelligently adaptive to the parameters and structures of dynamics. This paper, therefore, discusses an extended sliding mode controller that is based on an evolving linear model (ELM) designed and implemented as a systematic approach to tackling the arms target angle tracking problem in the ball-handling system of a robot. Without any prior knowledge about the dynamics of the system other than its highest possible order, the dynamic orders and relative degrees of the system are practically derived. A novel online linearization technique based on the recursive least squares (RLS) method which keeps the output error of estimation in a relatively small bound is applied to identify the plant and to derive an adaptive-linear-regression (ALR) model of the system. Subsequently, having a model in which the number of constructing independent regressors varies over time, an extended sliding mode control strategy, established upon Lyapunov theory, is applied to the online-identifying ELM of the ball-handling system. In order to quantify the effectiveness of the proposed methodology, comparative analysis of the proposed strategy with well-established linear quadratic regulator (LQR) design and other suggested work on this topic, on the robustness of controllers, are performed in simulations. Ultimately, multifarious practical scenarios were designed, performed, and validated for the handling mechanism. The results clearly demonstrate the benefits and effectiveness of the design approaches in practice.
机译:现实世界机器人技术的复杂性和永久性增长的严峻挑战要求大多数控制系统智能地适应动力学的参数和结构。因此,本文讨论基于扩展线性模型(ELM)的扩展滑模控制器,该线性滑模控制器设计并实现为解决机器人控球系统中手臂目标角度跟踪问题的系统方法。除了可能的最高阶以外,没有任何关于系统动力学的先验知识,实际上就可以得出系统的动态阶数和相对程度。一种基于递归最小二乘(RLS)方法的在线线性化新技术,该方法将估计的输出误差保持在相对较小的范围内,以识别植物并导出系统的自适应线性回归(ALR)模型。随后,通过建立独立回归变量的数量随时间变化的模型,将基于Lyapunov理论建立的扩展滑模控制策略应用于在线识别球处理系统的ELM。为了量化所提出的方法的有效性,在仿真中对具有完善的线性二次调节器(LQR)设计的提议策略进行了比较分析,并就此主题提出了关于控制器鲁棒性的其他建议工作。最终,为处理机制设计,执行和验证了多种实际方案。结果清楚地表明了设计方法在实践中的好处和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号