首页> 外文期刊>Control Engineering Practice >Road profile estimation using an adaptive Youla-Kučera parametric observer: Comparison to real profilers
【24h】

Road profile estimation using an adaptive Youla-Kučera parametric observer: Comparison to real profilers

机译:使用自适应Youla-Kučera参数观测器进行道路轮廓估算:与真实轮廓仪的比较

获取原文
获取原文并翻译 | 示例

摘要

Road profile acts as a disturbance input to the vehicle dynamics and results in undesirable vibrations affecting the vehicle stability. An accurate knowledge of this data is a key for a better understanding of the vehicle dynamics behavior and active vehicle control systems design. However, direct measurements of the road profile are not trivial for technical and economical reasons, and thus alternative solutions are needed. This paper develops a novel observer, known as a virtual sensor, suitable for real-time estimation of the road profile. The developed approach is built on a quarter-car model and uses measurements of the vehicle body. The road roughness is modeled as a sinusoidal disturbance signal acting on the vehicle system. Since this signal has unknown and time-varying characteristics, the proposed estimation method implements an adaptive control scheme based on the internal model principle and on the use of Youla-Kučera (YK) parameterization technique (also known as Q-parameterization). For performances assessment, estimations are comparatively evaluated with respect to measurements issued from Longitudinal Profile Analyzer (LPA) and Inertial Profiler (IP) instruments during experimental trials. The proposed method is also compared to the approach provided in Doumiati, Victorino, Charara, and Lechner (2011), where a stochastic Kalman filter is applied assuming a linear road model. Results show the effectiveness and pertinence of the present observation scheme.
机译:道路轮廓充当对车辆动力学的干扰输入,并导致不希望的振动,从而影响车辆的稳定性。准确了解这些数据是更好地了解车辆动力学行为和主动车辆控制系统设计的关键。但是,出于技术和经济原因,直接测量道路轮廓并不是很简单,因此需要替代解决方案。本文开发了一种新颖的观察器,称为虚拟传感器,适用于道路轮廓的实时估计。所开发的方法建立在四分之一汽车模型的基础上,并使用车身的测量值。道路不平度建模为作用在车辆系统上的正弦干扰信号。由于此信号具有未知且随时间变化的特征,因此所提出的估计方法基于内部模型原理并使用Youla-Kučera(YK)参数化技术(也称为Q参数化)来实现自适应控制方案。为了进行性能评估,在实验试验期间,对纵向轮廓分析仪(LPA)和惯性轮廓仪(IP)仪器发出的测量值进行了比较评估。还将所提出的方法与Doumiati,Victorino,Charara和Lechner(2011)中提供的方法进行了比较,在该方法中,假设线性道路模型,则应用了随机卡尔曼滤波器。结果表明了本观测方案的有效性和针对性。

著录项

  • 来源
    《Control Engineering Practice》 |2017年第4期|270-278|共9页
  • 作者单位

    ESEO Group, High School of Engineering, Electronics and Control Department, 10 Bd Jean Jeanneteau, 49100 Angers, France;

    Univ. Grenoble Alpes, GIPSA-Lab, 38000 Grenoble, France;

    Univ. Grenoble Alpes, GIPSA-Lab, 38000 Grenoble, France;

    Univ. Grenoble Alpes, GIPSA-Lab, 38000 Grenoble, France;

    IFSTTAR, MA Laboratory, 13300 Salon de Provence, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Road profile; Youla-Kučera parameterization; Vehicle dynamics; Profilers;

    机译:道路轮廓;Youla-Kučera参数化;车辆动力学;分析器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号