首页> 外文期刊>Concurrency and computation: practice and experience >Fully automated roadside parking spot detection in real time with deep learning
【24h】

Fully automated roadside parking spot detection in real time with deep learning

机译:完全自动化的路边停车位探测实时与深度学习

获取原文
获取原文并翻译 | 示例

摘要

Searching for a roadside parking spot in crowded cities is a burden. In this article, we propose a vision-based mobile cloud parking management solution, which is fully automated such that it can find roadside parking spots in any street with flowing traffic. To develop such a system, we employ both object detection and road segmentation methods. Thus, we do not need to manually label and train for every distinct street and do not mark out parking spot boundaries and surrounding road areas. In our approach, fully convolutional networks, specifically the FCN-VGG16 model and KITTI road dataset are used for road segmentation, whereas Faster Region-based Convolutional Neural Networks and Microsoft Common Objects in Context dataset for object detection. Our Road Boundaries algorithm automatically identifies the road polygon excluding the roadside. The main contribution here is to differentiate the parked cars from the moving cars on the road and detect the available parking spot between the parked cars on the roadside and direct the driver to the nearest spot. On GPU, we achieved a frame rate of 1.5fps and up to 83% accuracy with flowing traffic and 92% with no traffic flow. These results promise a potential solution on a city-wide scale.
机译:在拥挤的城市寻找路边停车位是一种负担。在本文中,我们提出了一个基于视觉的移动云停车管理解决方案,这是完全自动化的,使得它可以在任何街道上找到具有流量流量的路边停车位。要开发这样的系统,我们使用对象检测和道路分割方法。因此,我们不需要为每个独特的街道手动标记和训练,并没有标记停车位边界和周围的道路区域。在我们的方法中,完全卷积网络,特别是FCN-VGG16模型和基蒂路数据集用于道路分割,而基于区域的卷积神经网络和上下文数据集中的Microsoft常见对象进行对象检测。我们的道路边界算法自动识别不包括路边的道路多边形。这里的主要贡献是将停放的汽车从道路上的移动汽车区分开,并检测路边的停放汽车之间的可用停车位,并将司机指向最近的位置。在GPU上,我们达到了1.5fps的帧速率,最高可达83%,流量高达83%,而且没有交通流量的92%。这些结果承诺了一个城市范围的潜在解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号