首页> 外文期刊>Concurrency and computation: practice and experience >Multiview spectral clustering via complementary information
【24h】

Multiview spectral clustering via complementary information

机译:通过互补信息多视图光谱聚类

获取原文
获取原文并翻译 | 示例

摘要

In this article, multiview spectral clustering via complementary information (MSCC) is proposed, in which both the consensus information and the complementary information are explored for multiview clustering. In contrast to most multiview spectral clustering methods, the proposed MSCC considers the differences among multiple views and constructs a similarity matrix for clustering. Furthermore, a convex relaxation is employed and an algorithm that is based on the augmented Lagrange multiplier is proposed for optimizing the objective function of MSCC. In extensive experiments on five real-world benchmark datasets, our proposed method outperforms two baselines and has significantly improved to several state-of-the-art multiview clustering methods.
机译:在本文中,提出了通过互补信息(MSCC)的多视图光谱聚类,其中探索了共识信息和互补信息进行多视图集群。 与大多数多视图频谱聚类方法相比,所提出的MSCC考虑多个视图之间的差异并构建用于群集的相似性矩阵。 此外,采用凸松弛,并提出了一种基于增强拉格朗日乘数的算法,用于优化MSCC的目标函数。 在五个现实世界基准数据集的广泛实验中,我们提出的方法优于两个基线,并显着提高到几种最先进的多视图聚类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号