首页> 外文OA文献 >3D-Gabor Inspired Multiview Active Learning for Spectral-Spatial Hyperspectral Image Classification
【2h】

3D-Gabor Inspired Multiview Active Learning for Spectral-Spatial Hyperspectral Image Classification

机译:3D-Gabor激发了多视图主动学习,用于光谱空间高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Active learning (AL) has been shown to be very effective in hyperspectral image (HSI) classification. It significantly improves the performance by selecting a small quantity of the most informative training samples to reduce the complexity of classification. Multiview AL (MVAL) can make the comprehensive analysis of both object characterization and sampling selection in AL by using various features of multiple views. However, the original MVAL cannot effectively exploit the spectral-spatial information by respecting the three-dimensional (3D) nature of the HSI and the query selection strategy in the MVAL is only based on the disagreement of multiple views. In this paper, we propose a 3D-Gabor inspired MVAL method for spectral-spatial HSI classification, which consists of two main steps. First, in the view generation step, we adopt a 3D-Gabor filter to generate multiple cubes with limited bands and utilize the feature assessment strategies to select cubes for constructing views. Second, in the sampling selection step, a novel method is proposed by using both internal and external uncertainty estimation (IEUE) of views. Specifically, we use the distributions of posterior probability to learn the “internal uncertainty” of each independent view, and adopt the inconsistencies between views to estimate the “external uncertainty”. Classification accuracies of the proposed method for the four benchmark HSI datasets can be as high as 99.57%, 99.93%, 99.02%, 98.82%, respectively, demonstrating the improved performance as compared with other state-of-the-art methods.
机译:主动学习(AL)已被证明在高光谱图像(HSI)分类中非常有效。通过选择少量最具信息丰富的培训样本来显着提高性能,以降低分类的复杂性。 MultiView Al(MVAL)可以通过使用多个视图的各种特征来进行对目标表征和采样选择的全面分析。然而,原始MVAL不能通过尊重HSI的三维(3D)性质而有效地利用光谱空间信息,并且MVAL中的查询选择策略仅基于多个视图的分歧。在本文中,我们提出了一种用于光谱空间HSI分类的3D-Gabor启发了MVAL方法,其包括两个主要步骤。首先,在查看生成步骤中,我们采用3D-Gabor滤波器生成具有有限频带的多个多维数据集,并利用要素评估策略来选择用于构造视图的多维数据集。其次,在采样选择步骤中,通过使用视图的内部和外部不确定性估计(Ieue)来提出一种新方法。具体地,我们使用后验概率的分布来学习每个独立视图的“内部不确定性”,并采用视图之间的不一致来估计“外部不确定性”。四个基准HSI数据集的提出方法的分类精度可以高达99.57%,99.93%,99.93%,99.02%,98.82%,与其他最先进的方法相比,表现出改善的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号