首页> 外文期刊>Pattern recognition letters >Multiview and multifeature spectral clustering using common eigenvectors
【24h】

Multiview and multifeature spectral clustering using common eigenvectors

机译:使用公共特征向量的多视图和多特征谱聚类

获取原文
获取原文并翻译 | 示例

摘要

An ever-increasing number of data analysis problems include more than one view of the data, i.e. different measurement approaches to the population under study. In consequence, pattern analysis methods that deal appropriately with multiview data are becoming increasingly useful. In this paper, a novel multiview spectral clustering algorithm is presented (multiview spectral clustering by common eigenvectors, or MVSC-CEV), based on computing the common eigenvectors of the Laplacian matrices derived from the similarity matrices of the input data. This algorithm maintains the features of spectral clustering, while allowing the use of an arbitrary number of input views, possibly of a different nature (feature or graph space) and with different dimensions. The method has been tested on four standard multiview data sets (UCI's Handwritten, BBC segmented news, Max Planck Institute's Animal With Attributes and Reuters multilingual), and compared with seven methods in the state of the art. Seven standard clustering evaluation metrics have been used in the experiments. The quality of the clustering produced by MVSC-CEV is above those obtained by other state-of-the-art methods in the majority of evaluation metrics and dataset combinations. The computation times of this method are approximately twice those of the baseline spectral clustering of the concatenated data views. (c) 2017 Elsevier B.V. All rights reserved.
机译:越来越多的数据分析问题包括不只一种数据视图,即对所研究人口的不同测量方法。结果,适当地处理多视图数据的模式分析方法变得越来越有用。本文在计算从输入数据相似性矩阵得出的拉普拉斯矩阵的公共特征向量的基础上,提出了一种新颖的多视图光谱聚类算法(通过公共特征向量或MVSC-CEV进行多视图光谱聚类)。该算法保留了频谱聚类的特征,同时允许使用任意数量的输入视图,这些输入视图可能具有不同的性质(特征或图形空间)并且具有不同的尺寸。该方法已在四个标准的多视图数据集(UCI的手写,BBC分段新闻,马克斯·普朗克研究所的“动物具有属性”和路透社多语言)上进行了测试,并与现有的七个方​​法进行了比较。实验中使用了七个标准的聚类评估指标。在大多数评估指标和数据集组合中,MVSC-CEV产生的聚类质量高于通过其他最新方法获得的聚类质量。该方法的计算时间约为串联数据视图的基线光谱聚类的计算时间的两倍。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号