首页> 外文期刊>Concurrency and computation: practice and experience >A self-stabilizing algorithm for constructing amaximal (ğœ, ğœ)-directed acyclic mixed graph
【24h】

A self-stabilizing algorithm for constructing amaximal (ğœ, ğœ)-directed acyclic mixed graph

机译:一种构建阿倍化(ğœ,ğœ) - 一条无循环混合图的自稳定算法

获取原文
获取原文并翻译 | 示例

摘要

A (sigma,tau)-directed acyclic mixed graph (DAMG) is a mixed graph, which allows both arcs (or directed edges) and (undirected) edges such that there exist exactly sigma source nodes and tau sink nodes, but there exists no directed cycle (consisting of only arcs). Each source (resp. sink) node has at least one outgoing (resp. incoming) arc, but no incoming (resp. outgoing) arc. Moreover any other node is neither a source nor a sink node; it has no incident arc or both outgoing and incoming arcs. This article considers maximal (sigma,tau)-DAMG constructions: when an arbitrary undirected connected graph G=(V,E) and two distinct subsets S and T of node set V, where |S|=sigma and |T|=tau, are given, construct a maximal (sigma,tau)-DAMG with source node set S and sink node set T by assigning directions to as many edges as possible (ie, by changing edges into arcs). The maximality implies that changing any more edges to arcs violates the conditions of a (sigma,tau)-DAMG (eg, a sink node has an outgoing arc or a directed cycle is created). As a previous work, a self-stabilizing algorithm for constructing a maximal (1,1)-DAMG in an arbitrary undirected connected graph is proposed for the case of sigma=tau=1. In this article, we consider construction of a maximal (sigma,tau)-DAMG for any sigma and tau. First, we introduce a self-stabilizing algorithm for a maximal (1,2)-DAMG construction in any connected graph (with few constraints), which is based on the previous work. Concerning generalization of sigma and tau to arbitrary values, we first clarify the necessary and sufficient condition under which a (sigma,tau)-DAMG can be constructed in which a source and a sink node sets are given. Then, we propose a generalized self-stabilizing algorithm that constructs a (sigma,tau)-DAMG when a given graph with a source and a sink node sets satisfies the above condition.
机译:a(sigma,tau) - 指定的无环混合图(damg)是混合图,其允许两个弧(或指向边缘)和(无向)边缘,使得存在精确的Sigma源节点和TAU下沉节点,但存在没有定向周期(仅由弧组成)。每个源(RESP。接收器)节点至少有一个输出(RESP.CENTOMING)弧,但没有传入(RESP.UTCH。传出)弧。此外,任何其他节点都不是源也不是水槽节点;它没有入射弧或外向和传入弧。本文考虑了最大(Sigma,Tau)-DAMG结构:当任意无向连接图G =(V,E)和节点集V的两个不同的子集S和T,其中| s | = Sigma和| t | = Tau给出,通过将方向分配给尽可能多的边缘(即,通过将边缘改变为弧)来构造具有源节点SET S和宿节节点SET T的最大(Sigma,Tau)-damg。最大旨在意味着改变到弧的任何边缘违反了(Sigma,Tau)-DAMG的条件(例如,宿节点具有传出弧或指向周期)。作为先前的工作,提出了一种用于构建任意无向连接图中的最大(1,1)-DAMG的自稳定算法,用于Sigma = Tau = 1的情况。在本文中,我们考虑建造任何Sigma和Tau的最大(Sigma,Tau)-DAMG。首先,我们在任何连接的图表中引入一个自稳定算法,用于最大(1,2)-DAMG结构(具有很少的约束),这是基于先前的工作。关于Sigma和Tau的概括到任意值,我们首先阐明了可以构建(Sigma,Tau)-DAMG的必要和充分条件,其中给出了源和汇节点组。然后,我们提出了一种推广的自我稳定算法,该算法构造(Sigma,Tau)-damg,当带源和宿节点组的给定图表满足上述条件时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号