首页> 外文期刊>Concurrency, practice and experience >A comprehensive research on exponential smoothing methods in modeling and forecasting cellular traffic
【24h】

A comprehensive research on exponential smoothing methods in modeling and forecasting cellular traffic

机译:模拟和预测蜂窝交通指数平滑方法的综合研究

获取原文
获取原文并翻译 | 示例

摘要

Traffic prediction based on time series analysis methods that are low-cost and low computational complexity can offer more efficient resource management and better QoS. Although exponential smoothing is such a kind of method, there is a lack of application in cellular networks and data traffic research, especially with the robust development of mobile Internet applications nowadays. Therefore, this study provides a comprehensive research on cellular network traffic prediction using exponential smoothing methods. More cases of traffic including voice and data in different time granularities as well as different domains compared with other studies are considered. Besides, more exponential smoothing methods are simultaneously investigated for different cases of traffic. Our multiple case study approach leads to a more convincing result of choosing the best fit model. Data collected from real commercial cellular networks is used for experiments to make the results more practical and persuasively. In our experiment method, the model has the lowest RMSE value is chosen among three types of method. The experiment results show that exponential smoothing methods outperform multiplicative seasonal ARIMA, which is slower and more complex in computation in all cases, so they should be recommended for traffic prediction.
机译:基于时间序列分析方法的流量预测,即低成本和低计算复杂性可以提供更有效的资源管理和更好的QoS。虽然指数平滑是一种这种方法,但在蜂窝网络和数据流量研究中缺乏应用,特别是随着移动互联网应用的强大开发。因此,本研究为使用指数平滑方法提供了关于蜂窝网络流量预测的综合研究。考虑了更多的流量案例,包括不同时间粒度的语音和数据以及与其他研究相比的不同域。此外,对于不同的交通情况,同时研究了更多的指数平滑方法。我们的多种案例研究方法导致选择最佳拟合模型的更令人信服的结果。从真实商业蜂窝网络收集的数据用于实验,使结果更加实用和有说服力。在我们的实验方法中,该模型具有三种类型的方法中选择了最低的RMSE值。实验结果表明,指数平滑方法优于乘法季节性Arima,在所有情况下,计算中的计算较慢,更复杂,因此应建议他们进行交通预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号