首页> 外文期刊>Concurrency, practice and experience >Joint multilabel classification and feature selection based on deep canonical correlation analysis
【24h】

Joint multilabel classification and feature selection based on deep canonical correlation analysis

机译:基于深度规范相关分析的联合多标签分类和特征选择

获取原文
获取原文并翻译 | 示例

摘要

In recent years, multilabel learning has been applied to a lot of application areas and is yet a challenging task. In multilabel learning, an instance often belongs to multiple class labels simultaneously. The labels usually have correlations with others, and mining label correlations is helpful to enhance the multilabel classification performance. Aiming at increasing the accuracy of prediction, Label embedding (LE) is an important technique, and conducive to extracting label information for multilabel learning. In this paper, we present a novel multilabel learning approach via exploiting label correlations, which can be naturally extended to tackle feature selection problem. First, to obtain the discriminative features shared by all labels, the proposed algorithm learns a latent space by employing deep canonical correlation analysis. Then we exploit label correlations by enforcing predictions on similar labels to be similar, thereby improving the prediction performance. Results on several multiple datasets illustrate that the proposed algorithm has the advantages on multilabel classification and feature selection.
机译:近年来,多拉拉德学习已被应用于许多应用领域,并且是一个具有挑战性的任务。在Multilabel学习中,一个实例通常同时属于多个类标签。标签通常与其他标签相关,并且采矿标签相关性有助于提高多标签分类性能。旨在提高预测的准确性,标签嵌入(LE)是一种重要的技术,有利于提取Mullilabel学习的标签信息。在本文中,我们通过利用标签相关性提出了一种新颖的多标签学习方法,这可以自然地扩展以解决特征选择问题。首先,为了获得所有标签共享的鉴别特征,所提出的算法通过采用深度规范相关分析来学习潜在空间。然后我们通过强制对类似标签的预测来利用标签相关性,从而提高预测性能。几个多个数据集上的结果说明所提出的算法对多织布分类和特征选择具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号