首页> 外文期刊>Concurrency, practice and experience >SimAS: A simulation-assisted approach for the scheduling algorithm selection under perturbations
【24h】

SimAS: A simulation-assisted approach for the scheduling algorithm selection under perturbations

机译:SIMAS:扰动下的调度算法选择的仿真辅助方法

获取原文
获取原文并翻译 | 示例

摘要

Summary Many scientific applications consist of large and computationally intensive loops. Dynamic loop self‐scheduling (DLS) techniques are used to parallelize and to balance the load of such applications during execution. Load imbalance arises from variations in the loop iteration (or tasks) execution times, caused by problem, algorithmic, or systemic characteristics. Variations in systemic characteristics are referred to as perturbations. Our hypothesis is that no single DLS technique can achieve the absolute best performance under various perturbations on heterogeneous high‐performance computing (HPC) systems. Therefore, the selection of the most efficient DLS technique is critical to achieve the best application performance. The goal of this work is to solve the algorithm selection problem for the scheduling of computationally intensive applications under perturbations. Existing work only considers perturbations caused by variations in the delivered computational speed of the HPC systems. However, perturbations in available network bandwidth or latency are inevitable on production HPC systems. A simulation‐assisted scheduling algorithm selection (SimAS) approach is introduced herein as a novel control‐theoretic‐inspired approach to select DLS techniques dynamically that improve the performance of applications executing on heterogeneous HPC systems under perturbations. The present work examines the performance of seven applications on a heterogeneous HPC system under all the above system perturbations. SimAS is evaluated using native and simulative experiments. The performance results confirm the original hypothesis that motivates this work. The experimental evaluation shows that the SimAS‐based DLS selection identifies the most efficient technique and improves application performance in most cases.
机译:发明内容许多科学应用包括大型和计算密集环。动态循环自调度(DLS)技术用于并行化并在执行期间平衡此类应用的负载。负载不平衡从循环迭代(或任务)执行时间的变化出现,由问题,算法或系统特征引起。系统特征的变化被称为扰动。我们的假设是,在异构高性能计算(HPC)系统的各种扰动下,没有单一DLS技术可以实现绝对最佳性能。因此,选择最有效的DLS技术对于实现最佳应用性能至关重要。这项工作的目标是解决捕获下计算密集应用程序的算法选择问题。现有工作仅考虑由HPC系统的交付计算速度的变化引起的扰动。然而,在可用网络带宽或延迟中的扰动在生产HPC系统上是不可避免的。本文在本文中引入了模拟辅助调度算法选择(SIMAS)方法作为一种新颖的控制定理启动方法,可以动态地选择DLS技术,从而改善在扰动下在异构HPC系统上执行的应用程序的性能。本工作探讨了在所有上述系统扰动下的异质HPC系统上七种应用的性能。使用本机和模拟实验评估SIMAS。性能结果证实了激励这项工作的原始假设。实验评估表明,基于SIMAS的DLS选择识别最有效的技术并在大多数情况下提高应用性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号