首页> 外文期刊>Concurrency, practice and experience >Top corner gas concentration prediction using t-distributed Stochastic Neighbor Embedding and Support Vector Regression algorithms
【24h】

Top corner gas concentration prediction using t-distributed Stochastic Neighbor Embedding and Support Vector Regression algorithms

机译:使用T分布式随机邻居嵌入和支持向量回归算法的顶拐角气体浓度预测

获取原文
获取原文并翻译 | 示例

摘要

The excess of gas concentration in the top corner of coal working face has always been the main factor restricting the safe productivity of coal mines. Therefore, the rapid and accurate prediction of top corner gas concentration is an effective method to prevent gas disasters. At the same time, the development of the Internet of things has made the gas monitoring data collected by the coal mine safety monitoring system exhibit nonlinear big data characteristics. In order to mine the characteristic data related to the gas concentration of the top corner from a high-dimensional and nonlinear monitoring datasets, a model that integrates the t-distributed Stochastic Neighbor Embedding algorithm (t-SNE) and the Support Vector Regression (SVR) algorithm to predict the gas concentration of the top corner on the coal working face is proposed. First, the multidimensional monitoring data are nonlinearly dimension-reduced by t-SNE algorithm, which enabled the spatial feature data of the monitoring data to be extracted. After that, the SVR algorithm was used to construct the nonlinear regression model between the spatial feature data and the actual gas concentration of the top corner to predict the gas concentration of the top corner. The experimental results show that the predictive model based on t-SNE and SVR was better than the multiple linear regression, SVR, Principal Components Analysis (PCA) + SVR. The results show the model based on t-SNE and SVR was more stable and could provide more accurate predictions, anomaly sensitivity, and the fitness is 0.55628405, which can better fit the actual gas concentration of the top corner.
机译:煤炭工作面顶角的气体浓度始终是限制煤矿安全生产率的主要因素。因此,对顶角气体浓度的快速和准确的预测是防止煤气灾害的有效方法。与此同时,事物互联网的发展使煤矿安全监测系统收集的气体监测数据表现出非线性大数据特征。为了使与高维和非线性监视数据集的顶角的气体浓度相关的特征数据,该模型集成了T分布式随机邻居嵌入算法(T-SNE)和支持向量回归(SVR )提出了预测煤工作面上顶角的气体浓度的算法。首先,通过T-SNE算法,多维监测数据是非线性的尺寸减小,其使得能够提取监视数据的空间特征数据。之后,使用SVR算法在空间特征数据和顶角的实际气体浓度之间构建非线性回归模型,以预测顶角的气体浓度。实验结果表明,基于T-SNE和SVR的预测模型优于多元线性回归,SVR,主成分分析(PCA)+ SVR。结果表明,基于T-SNE和SVR的模型更稳定,可以提供更准确的预测,异常敏感性,健身为0.55628405,这可以更好地符合顶角的实际气体浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号