首页> 外文OA文献 >Prediction of Band Gap Energy of Doped Graphitic Carbon Nitride Using Genetic Algorithm-Based Support Vector Regression and Extreme Learning Machine
【2h】

Prediction of Band Gap Energy of Doped Graphitic Carbon Nitride Using Genetic Algorithm-Based Support Vector Regression and Extreme Learning Machine

机译:基于遗传算法的支持向量回归和极端学习机预测掺杂石墨氮化物的带隙能量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graphitic carbon nitride is a stable and distinct two dimensional carbon-based polymeric semiconductor with remarkable potentials in organic pollutants degradation, chemical sensors, the reduction of CO2, water splitting and other photocatalytic applications. Efficient utilization of this material is hampered by the nature of its band gap and the rapid recombination of electron-hole pairs. Heteroatom incorporation due to doping alters the symmetry of the semiconductor and has been among the adopted strategies to tailor the band gap for enhancing the visible-light harvesting capacity of the material. Electron modulation and enhancement of reaction active sites due to doping as evident from the change in specific surface area of doped graphitic carbon nitride is employed in this work for modeling the associated band gap using hybrid genetic algorithm-based support vector regression (GSVR) and extreme learning machine (ELM). The developed GSVR performs better than ELM-SINE (with sine activation function), ELM-TRANBAS (with triangular basis activation function) and ELM-SIG (with sigmoid activation function) model with performance enhancement of 69.92%, 73.59% and 73.67%, respectively, on the basis of root mean square error as a measure of performance. The four developed models are also compared using correlation coefficient and mean absolute error while the developed GSVR demonstrates a high degree of precision and robustness. The excellent generalization and predictive strength of the developed models would ultimately facilitate quick determination of the band gap of doped graphitic carbon nitride and enhance its visible-light harvesting capacity for various photocatalytic applications.
机译:石墨碳氮化物是一种稳定的和不同的二维基于碳的聚合半导体与有机污染物降解显着的电势,化学传感器,CO2,水分解和光催化其它应用的减少。这种材料的有效利用是通过它的带隙的性质和电子 - 空穴对的重组迅速阻碍。杂原子掺入由于掺杂改变了半导体的对称性,并已采用的策略,以裁缝用于增强材料的可见光收获容量的带隙之间。电子调制和增强由于掺杂为显而易见,在这项工作中,采用了使用混合基于遗传算法的支持向量回归(GSVR)和极端建模相关联的带隙掺杂石墨氮化碳的比表面积的变化反应活性位点的学习机(ELM)。发达GSVR进行比ELM-SINE更好(带正弦激励函数),ELM-TRANBAS(三角形基础激活功能)和ELM-SIG(乙状结肠激活功能)模型的69.92%,73.59%和73.67%的性能提升,分别根的基础上均方误差作为性能的量度。四个研发的车型使用的相关系数和平均绝对误差而发达GSVR演示了高精确度和耐用性也比较。优秀的推广和开发的模型预测强度将最终有助于快速确定掺杂石墨氮化碳的带隙,并加强对各种光催化应用中的可见光捕捞能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号