首页> 外文期刊>Concurrency and computation: practice and experience >An improved particle swarm optimization algorithm for AVO elastic parameter inversion problem
【24h】

An improved particle swarm optimization algorithm for AVO elastic parameter inversion problem

机译:一种改进的AVO弹性参数反转问题粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

The elastic parameter inversion technique for prestack seismic data, which combines the intelligentoptimization algorithms with Amplitude Variation with Offset (AVO) technology, is aneffective method for oil and gas exploration. However, when certain biological-evolution–basedoptimization algorithms, eg, genetic algorithms, are used to solve this problem, the computationexhibits fast convergence and a strong tendency to be trapped to a local optimum,thereby leading to unsatisfactory inversion results. To address this issue, this paper proposes aswarm-intelligence-based method-Particle Swarm Optimization (PSO) algorithm to handle theelastic parameter inversion problem. Based on the Aki-Richards approximation to the Zoeppritzequations, the improvedPSOalgorithm adopts a special initialization strategy, which can enhancethe smoothness of the initialization parametric curves. Extensive experimental research confirmsthe superiority of the proposed algorithm. Specifically, the improved PSO algorithm is ableto not only markedly enhance inversion precision but also render remarkably high correlationcoefficients associated with the elastic parameters.
机译:Prestack地震数据的弹性参数反转技术,它结合了智能具有偏移(AVO)技术的幅度变化的优化算法是一个石油和天然气勘探的有效方法。但是,当某些生物学的基于生物学优化算法,例如遗传算法,用于解决这个问题,计算展示快速收敛和强烈倾向于捕获到当地最佳的趋势,从而导致不满意的反演结果。为了解决这个问题,本文提出了一个基于群体智能的方法 - 粒子群优化(PSO)算法处理弹性参数反转问题。基于Aki-Richards近似到Zoeppritz方程式,改进的攻击算法采用特殊的初始化策略,可以增强初始化参数曲线的平滑度。广泛的实验研究证实所提出的算法的优越性。具体地,改进的PSO算法能够不仅显着提高了反演精度,而且还呈现出显着的相关性与弹性参数相关的系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号