首页> 外文期刊>Concurrency and computation: practice and experience >An improved particle swarm optimization algorithm for AVO elastic parameter inversion problem
【24h】

An improved particle swarm optimization algorithm for AVO elastic parameter inversion problem

机译:AVO弹性参数反演问题的改进粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

The elastic parameter inversion technique for prestack seismic data, which combines the intelligentoptimization algorithms with Amplitude Variation with Offset (AVO) technology, is aneffective method for oil and gas exploration. However, when certain biological-evolution–basedoptimization algorithms, eg, genetic algorithms, are used to solve this problem, the computationexhibits fast convergence and a strong tendency to be trapped to a local optimum,thereby leading to unsatisfactory inversion results. To address this issue, this paper proposes aswarm-intelligence-based method-Particle Swarm Optimization (PSO) algorithm to handle theelastic parameter inversion problem. Based on the Aki-Richards approximation to the Zoeppritzequations, the improvedPSOalgorithm adopts a special initialization strategy, which can enhancethe smoothness of the initialization parametric curves. Extensive experimental research confirmsthe superiority of the proposed algorithm. Specifically, the improved PSO algorithm is ableto not only markedly enhance inversion precision but also render remarkably high correlationcoefficients associated with the elastic parameters.
机译:叠前地震数据的弹性参数反演技术结合了智能的 r n最优化算法和带偏移量的振幅变化(AVO)技术,是油气勘探的一种有效方法。但是,当使用某些基于生物进化的 r 优化算法(例如遗传算法)来解决此问题时,该计算 r 便会避免快速收敛,并且很容易陷入局部最优值, r 从而导致反演结果不令人满意。为了解决这个问题,本文提出了一种基于 r nswarm-intelligence的方法—粒子群优化(PSO)算法来处理 r 弹性参数反演问题。在对Zoeppritz r nequations的Aki-Richards近似的基础上,改进的PSO算法采用特殊的初始化策略,可以增强初始化参数曲线的平滑度。大量的实验研究证实了该算法的优越性。具体而言,改进的PSO算法不仅可以显着提高反演精度,而且还可以显着提高与弹性参数关联的相关系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号