首页> 外文期刊>Concurrency and Computation >On the effectiveness of isolation-based anomaly detection incloud data centers
【24h】

On the effectiveness of isolation-based anomaly detection incloud data centers

机译:论孤立基异常检测的有效性云数据中心

获取原文
获取原文并翻译 | 示例

摘要

The high volume of monitoring information generated by large-scale cloud infrastructures posesa challenge to the capacity of cloud providers in detecting anomalies in the infrastructure. Traditionalanomaly detection methods are resource-intensive and computationally complex fortraining and/or detection, what is undesirable in very dynamic and large-scale environment suchas clouds. Isolation-based methods have the advantage of low complexity for training and detectionand are optimized for detecting failures. In this work, we explore the feasibility of IsolationForest, an isolation-based anomaly detection method, to detect anomalies in large-scale clouddata centers.Wepropose amethodtocodetime-series information asextra attributes that enabletemporal anomaly detection and establish its feasibility to adapt to seasonality and trends in thetime-series and to be applied online and in real-time.
机译:大规模云基础架构产生的大量监控信息姿势云提供商在基础设施中检测异常的挑战。传统的异常检测方法是资源密集型和计算复杂的培训和/或检测,在非常动态和大规模环境中是不可取的作为云。基于隔离的方法具有低复杂性的培训和检测的优点并优化用于检测故障。在这项工作中,我们探讨了隔离的可行性森林,一种基于分离的异常检测方法,检测大型云中的异常数据中心.Wepropose AmethodTocodetime系列信息ASExtra属性启用颞异常检测并确定其可行性,以适应季节性和趋势时间序列和在线应用,实时应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号