首页> 外文期刊>Computational Intelligence >Isolation-based anomaly detection using nearest-neighbor ensembles
【24h】

Isolation-based anomaly detection using nearest-neighbor ensembles

机译:使用最近邻居集成的基于隔离的异常检测

获取原文
获取原文并翻译 | 示例

摘要

The first successful isolation-based anomaly detector, ie, iForest, uses trees as a means to perform isolation. Although it has been shown to have advantages over existing anomaly detectors, we have identified 4 weaknesses, ie, its inability to detect local anomalies, anomalies with a high percentage of irrelevant attributes, anomalies that are masked by axis-parallel clusters, and anomalies in multimodal data sets. To overcome these weaknesses, this paper shows that an alternative isolation mechanism is required and thus presents iNNE or isolation using Nearest Neighbor Ensemble. Although relying on nearest neighbors, iNNE runs significantly faster than the existing nearest neighbor-based methods such as the local outlier factor, especially in data sets having thousands of dimensions or millions of instances. This is because the proposed method has linear time complexity and constant space complexity.
机译:第一个成功的基于隔离的成功异常检测器,即iForest,使用树作为执行隔离的手段。尽管已证明它比现有的异常检测器具有优势,但我们发现了4个缺陷,即它无法检测局部异常,不相关属性的百分比很高,被轴平行簇掩盖的异常以及多峰数据集。为了克服这些弱点,本文显示了一种替代的隔离机制是必需的,因此提出了使用最近邻居集成的iNNE或隔离。尽管依赖于最近的邻居,但iNNE的运行速度明显快于现有的基于最近邻居的方法(例如局部异常值),尤其是在具有数千个维度或数百万个实例的数据集中。这是因为所提出的方法具有线性时间复杂度和恒定空间复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号