首页> 外文期刊>Concurrency and Computation >On the effectiveness of isolation-based anomaly detection inrncloud data centers
【24h】

On the effectiveness of isolation-based anomaly detection inrncloud data centers

机译:基于隔离的Inrncloud数据中心异常检测的有效性

获取原文
获取原文并翻译 | 示例

摘要

The high volume of monitoring information generated by large-scale cloud infrastructures posesrna challenge to the capacity of cloud providers in detecting anomalies in the infrastructure. Traditionalrnanomaly detection methods are resource-intensive and computationally complex forrntraining and/or detection, what is undesirable in very dynamic and large-scale environment suchrnas clouds. Isolation-based methods have the advantage of low complexity for training and detectionrnand are optimized for detecting failures. In this work, we explore the feasibility of IsolationrnForest, an isolation-based anomaly detection method, to detect anomalies in large-scale cloudrndata centers.Wepropose amethodtocodetime-series information asextra attributes that enablerntemporal anomaly detection and establish its feasibility to adapt to seasonality and trends in therntime-series and to be applied online and in real-time.
机译:大型云基础架构所生成的大量监视信息对云提供商检测基础架构异常的能力构成了挑战。传统的异常检测方法是资源密集和计算复杂的训练和/或检测,这在非常动态和大规模的环境(如云)中是不希望的。基于隔离的方法的优点是训练和检测的复杂度较低,并且已针对检测故障进行了优化。在这项工作中,我们探索了基于隔离的异常检测方法IsolationrnForest在大型云数据中心中检测异常的可行性。在时间序列中并在线和实时应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号