首页> 外文期刊>Concurrency and Computation >Performance-influence models of multigrid methods: A case study ontriangular grids
【24h】

Performance-influence models of multigrid methods: A case study ontriangular grids

机译:多国内方法的性能影响模型:案例研究三角网格

获取原文
获取原文并翻译 | 示例

摘要

Multigrid methods are among the most efficient algorithms for solving discretized partial differentialequations. Typically, a multigrid system offers various configuration options to tune performance fordifferent applications and hardware platforms. However, knowing the best performing configuration inadvance is difficult, because measuring all multigrid system variants is costly. Instead of directmeasurements, we use machine learning to predict the performance of the variants. Selecting arepresentative set of configurations for learning is nontrivial, although, but key to prediction accuracy. Weinvestigate different sampling strategies to determine the tradeoff between accuracy and measurement effort. In a nutshell, we learn a performance-influence model that captures the influences of configurationoptions and their interactions on the time to perform a multigrid iteration and relate this to existing domainknowledge. In an experiment on a multigrid system working on triangular grids, we found that combiningpair-wise sampling with the D-Optimal experimental design for selecting a learning set yields the mostaccurate predictions. After measuring less than 1 % of all variants, we were able to predict theperformance of all variants with an accuracy of 95.9 %. Furthermore, we were able to verify almost allknowledge on the performance behavior of multigrid methods provided by 2 experts.
机译:MultiGrid方法是求解离散偏差的最有效的算法之一方程式。通常,MultiGrid系统提供各种配置选项来调整性能不同的应用和硬件平台。但是,知道最好的执行配置提前很困难,因为测量所有多重版系统变体昂贵。而不是直接测量,我们使用机器学习来预测变形的性能。选择A.用于学习的代表性配置是非虚拟性的,但是预测准确性的关键。我们调查不同的抽样策略,以确定准确性和测量工作之间的权衡。简而言之,我们学习一个性能影响模型,捕获配置的影响选项及其在执行多个图标迭代并将其与现有域相关联的互动知识。在对三角形网格上工作的多国系统的实验中,我们发现结合了与D-OPTEMAL实验设计的配对采样,用于选择学习设定的最多准确的预测。在衡量所有变体的少于1%后,我们能够预测所有变体的性能,精度为95.9%。此外,我们能够验证几乎所有关于2个专家提供的多国方法的绩效行为的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号