首页> 外文期刊>Concurrency and Computation >Performance-influence models of multigrid methods: A case study onrntriangular grids
【24h】

Performance-influence models of multigrid methods: A case study onrntriangular grids

机译:多网格方法的性能影响模型:以三角网格为例

获取原文
获取原文并翻译 | 示例

摘要

Multigrid methods are among the most efficient algorithms for solving discretized partial differentialrnequations. Typically, a multigrid system offers various configuration options to tune performance forrndifferent applications and hardware platforms. However, knowing the best performing configuration inrnadvance is difficult, because measuring all multigrid system variants is costly. Instead of directrnmeasurements, we use machine learning to predict the performance of the variants. Selecting arnrepresentative set of configurations for learning is nontrivial, although, but key to prediction accuracy. Werninvestigate different sampling strategies to determine the tradeoff between accuracy and measurement effort. In a nutshell, we learn a performance-influence model that captures the influences of configurationrnoptions and their interactions on the time to perform a multigrid iteration and relate this to existing domainrnknowledge. In an experiment on a multigrid system working on triangular grids, we found that combiningrnpair-wise sampling with the D-Optimal experimental design for selecting a learning set yields the mostrnaccurate predictions. After measuring less than 1 % of all variants, we were able to predict thernperformance of all variants with an accuracy of 95.9 %. Furthermore, we were able to verify almost allrnknowledge on the performance behavior of multigrid methods provided by 2 experts.
机译:多重网格方法是解决离散偏微分方程的最有效算法之一。通常,多网格系统提供各种配置选项,以针对不同的应用程序和硬件平台调整性能。但是,要知道性能最佳的配置不便是困难的,因为测量所有多网格系统变体的成本很高。代替直接测量,我们使用机器学习来预测变体的性能。尽管选择学习代表配置的集合并不简单,但这是预测准确性的关键。 Wern研究不同的采样策略,以确定准确性和测量工作之间的权衡。简而言之,我们学习了一种性能影响模型,该模型捕获了配置选项及其交互对执行多网格迭代的时间的影响,并将其与现有的领域知识相关联。在对三角网格上的多网格系统进行的实验中,我们发现将成对抽样与D-最优实验设计相结合以选择学习集可得出最准确的预测。在测量了所有变体的不到1%之后,我们能够以95.9%的准确度预测所有变体的性能。此外,我们能够验证由2位专家提供的有关多网格方法的性能行为的几乎所有知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号